Integrable two-dimensional Lorentz-invariant nonlinear model of a complex scalar field (complex sine-Gordon II)

1981 ◽  
Vol 48 (1) ◽  
pp. 572-579 ◽  
Author(s):  
B. S. Getmanov
1996 ◽  
Vol 11 (10) ◽  
pp. 1763-1795 ◽  
Author(s):  
P.V. MONIZ

The general theory of N=1 supergravity with supermatter is applied to a Bianchi type IX diagonal model. The supermatter is constituted by a complex scalar field and its [Formula: see text] fermionic partners. The Kähler geometry is chosen to be a two-dimensional flat one. The Lorentz-invariant ansatz for the wave function of the universe is taken to be as simple as possible in order to obtain new solutions. The set of differential equations derived from the quantum constraints are analyzed in two different cases: if the supermatter terms include an analytical potential or not. In the latter the wave function is found to have a simple form.


1992 ◽  
Vol 169 (4) ◽  
pp. 308-312 ◽  
Author(s):  
I.M. Khalatnikov ◽  
A. Mezhlumian

2011 ◽  
Author(s):  
F. Briscese ◽  
Luis Arturo Ureña-López ◽  
Hugo Aurelio Morales-Técotl ◽  
Román Linares-Romero ◽  
Elí Santos-Rodríguez ◽  
...  

2020 ◽  
Vol 29 (11) ◽  
pp. 2041002
Author(s):  
Visakan Balakumar ◽  
Elizabeth Winstanley

The Hadamard parametrix is a representation of the short-distance singularity structure of the Feynman Green’s function for a quantum field on a curved spacetime background. Subtracting these divergent terms regularizes the Feynman Green’s function and enables the computation of renormalized expectation values of observables. We study the Hadamard parametrix for a charged, massive, complex scalar field in five spacetime dimensions. Even in Minkowski spacetime, it is not possible to write the Feynman Green’s function for a charged scalar field exactly in closed form. We, therefore, present covariant Taylor series expansions for the biscalars arising in the Hadamard parametrix. On a general spacetime background, we explicitly state the expansion coefficients up to the order required for the computation of the renormalized scalar field current. These coefficients become increasingly lengthy as the order of the expansion increases, so we give the higher-order terms required for the calculation of the renormalized stress-energy tensor in Minkowski spacetime only.


Sign in / Sign up

Export Citation Format

Share Document