charged scalar field
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 16)

H-INDEX

18
(FIVE YEARS 5)

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1477
Author(s):  
Yen-Kheng Lim

In this paper we explore a solenoid configuration involving a magnetic universe solution embedded in an empty Anti-de Sitter (AdS) spacetime. This requires a non-trivial surface current at the interface between the two spacetimes, which can be provided by a charged scalar field. When the interface is taken to the AdS boundary, we recover the full AdS–Melvin spacetime. The stability of the AdS–Melvin solution is also studied by computing the gravitational free energy from the Euclidean action.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Oscar J. C. Dias ◽  
Ramon Masachs ◽  
Paul Rodgers

Abstract We consider the static charged black hole bomb system, originally designed for a (uncharged) rotating superradiant system by Press and Teukolsky. A charged scalar field confined in a Minkowski cavity with a Maxwell gauge field has a quantized spectrum of normal modes that can fit inside the box. Back-reacting non-linearly these normal modes, we find the hairy solitons, a.k.a boson stars (depending on the chosen U(1) gauge), of the theory. The scalar condensate is totally confined inside the box and, outside it, we have the Reissner-Nordström solution. The Israel junction conditions at the box surface layer determine the stress tensor that the box must have to confine the scalar hair. Some of these horizonless hairy solutions exist for any value of the scalar field charge and not only above the natural critical charges of the theory (namely, the critical charges for the onset of the near-horizon and superradiant instabilities of the Reissner-Nordström black hole). However, the ground state solutions have a non-trivial intricate phase diagram with a main and a secondary family of solitons (some with a Chandrasekhar mass limit but others without) and there are a third and a fourth critical scalar field charges where the soliton spectra changes radically. Most of these intricate properties are not captured by a higher order perturbative analysis of the problem where we simply back-react a normal mode of the system.


2020 ◽  
Vol 29 (11) ◽  
pp. 2041002
Author(s):  
Visakan Balakumar ◽  
Elizabeth Winstanley

The Hadamard parametrix is a representation of the short-distance singularity structure of the Feynman Green’s function for a quantum field on a curved spacetime background. Subtracting these divergent terms regularizes the Feynman Green’s function and enables the computation of renormalized expectation values of observables. We study the Hadamard parametrix for a charged, massive, complex scalar field in five spacetime dimensions. Even in Minkowski spacetime, it is not possible to write the Feynman Green’s function for a charged scalar field exactly in closed form. We, therefore, present covariant Taylor series expansions for the biscalars arising in the Hadamard parametrix. On a general spacetime background, we explicitly state the expansion coefficients up to the order required for the computation of the renormalized scalar field current. These coefficients become increasingly lengthy as the order of the expansion increases, so we give the higher-order terms required for the calculation of the renormalized stress-energy tensor in Minkowski spacetime only.


2020 ◽  
Vol 37 (6) ◽  
pp. 065004 ◽  
Author(s):  
Visakan Balakumar ◽  
Elizabeth Winstanley

Author(s):  
Ricardo L. L. Vitória

Abstract We investigate rotating effects on a charged scalar field immersed in spacetime with a magnetic screw dislocation. In addition to the hard-wall potential, which we impose to satisfy a boundary condition from the rotating effect, we insert a Coulomb-type potential and the Klein–Gordon oscillator into this system, where, analytically, we obtain solutions of bound states which are influenced not only by the spacetime topology, but also by the rotating effects, as a Sagnac-type effect modified by the presence of the magnetic screw dislocation.


Sign in / Sign up

Export Citation Format

Share Document