A comparison of the complexity of the longest and shortest disjunctive normal forms and a lower bound for the number of prime disjunctive normal forms for almost all Boolean functions

Cybernetics ◽  
1972 ◽  
Vol 5 (4) ◽  
pp. 357-369
Author(s):  
A. D. Korshunov
Author(s):  
Ana Sălăgean ◽  
Pantelimon Stănică

AbstractIn this paper we want to estimate the nonlinearity of Boolean functions, by probabilistic methods, when it is computationally very expensive, or perhaps not feasible to compute the full Walsh transform (which is the case for almost all functions in a larger number of variables, say more than 30). Firstly, we significantly improve upon the bounds of Zhang and Zheng (1999) on the probabilities of failure of affinity tests based on nonhomomorphicity, in particular, we prove a new lower bound that we have previously conjectured. This new lower bound generalizes the one of Bellare et al. (IEEE Trans. Inf. Theory 42(6), 1781–1795 1996) to nonhomomorphicity tests of arbitrary order. Secondly, we prove bounds on the probability of failure of a proposed affinity test that uses the BLR linearity test. All these bounds are expressed in terms of the function’s nonlinearity, and we exploit that to provide probabilistic methods for estimating the nonlinearity based upon these affinity tests. We analyze our estimates and conclude that they have reasonably good accuracy, particularly so when the nonlinearity is low.


2020 ◽  
Vol 30 (2) ◽  
pp. 103-116 ◽  
Author(s):  
Kirill A. Popkov

AbstractWe prove that, for n ⩾ 2, any n-place Boolean function may be implemented by a two-pole contact circuit which is irredundant and allows a diagnostic test with length not exceeding n + k(n − 2) under at most k contact breaks. It is shown that with k = k(n) ⩽ 2n−4, for almost all n-place Boolean functions, the least possible length of such a test is at most 2k + 2.


2015 ◽  
pp. 435-452
Author(s):  
Andris Ambainis ◽  
Jozef Gruska ◽  
Shenggen Zheng

It has been proved that almost all n-bit Boolean functions have exact classical query complexity n. However, the situation seemed to be very different when we deal with exact quantum query complexity. In this paper, we prove that almost all n-bit Boolean functions can be computed by an exact quantum algorithm with less than n queries. More exactly, we prove that ANDn is the only n-bit Boolean function, up to isomorphism, that requires n queries.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 1035
Author(s):  
Ilya Shmulevich

Boolean networks are discrete dynamical systems comprised of coupled Boolean functions. An important parameter that characterizes such systems is the Lyapunov exponent, which measures the state stability of the system to small perturbations. We consider networks comprised of monotone Boolean functions and derive asymptotic formulas for the Lyapunov exponent of almost all monotone Boolean networks. The formulas are different depending on whether the number of variables of the constituent Boolean functions, or equivalently, the connectivity of the Boolean network, is even or odd.


Sign in / Sign up

Export Citation Format

Share Document