The petrological and geological significance of theb 0 values of potassic white micas in low-grade metamorphic rocks. An application to the Eastern Alps

1972 ◽  
Vol 18 (2) ◽  
pp. 105-113 ◽  
Author(s):  
F. P. Sassi
Author(s):  
Gejing Li ◽  
D. R. Peacor ◽  
D. S. Coombs ◽  
Y. Kawachi

Recent advances in transmission electron microscopy (TEM) and analytical electron microscopy (AEM) have led to many new insights into the structural and chemical characteristics of very finegrained, optically homogeneous mineral aggregates in sedimentary and very low-grade metamorphic rocks. Chemical compositions obtained by electron microprobe analysis (EMPA) on such materials have been shown by TEM/AEM to result from beam overlap on contaminant phases on a scale below resolution of EMPA, which in turn can lead to errors in interpretation and determination of formation conditions. Here we present an in-depth analysis of the relation between AEM and EMPA data, which leads also to the definition of new mineral phases, and demonstrate the resolution power of AEM relative to EMPA in investigations of very fine-grained mineral aggregates in sedimentary and very low-grade metamorphic rocks.Celadonite, having end-member composition KMgFe3+Si4O10(OH)2, and with minor substitution of Fe2+ for Mg and Al for Fe3+ on octahedral sites, is a fine-grained mica widespread in volcanic rocks and volcaniclastic sediments which have undergone low-temperature alteration in the oceanic crust and in burial metamorphic sequences.


1964 ◽  
Vol 262 (7) ◽  
pp. 904-917 ◽  
Author(s):  
M. I. Abdullah ◽  
M. P. Atherton
Keyword(s):  

1993 ◽  
Vol 5 (2) ◽  
pp. 193-206 ◽  
Author(s):  
P. D. Kinny ◽  
L. P. Black ◽  
J. W. Sheraton

The application of zircon U-Pb geochronology using the SHRIMP ion microprobe to the Precambrian high-grade metamorphic rocks of the Rauer Islands on the Prydz Bay coast of East Antarctica, has resulted in major revisions to the interpreted geological history. Large tracts of granitic orthogneisses, previously considered to be mostly Proterozoic in age, are shown here to be Archaean, with crystallization ages of 3270 Ma and 2800 Ma. These rocks and associated granulite-facies mafic rocks and paragneisses account for up to 50% of exposures in the Rauer Islands. Unlike the 2500 Ma rocks in the nearby Vestfold Hills which were cratonized soon after formation, the Rauer Islands rocks were reworked at about 1000 Ma under granulite to amphibolite facies conditions, and mixed with newly generated felsic crust. Dating of components of this felsic intrusive suite indicates that this Proterozoic reworking was accomplished in about 30–40 million years. Low-grade retrogression at 500 Ma was accompanied by brittle shearing, pegmatite injection, partial resetting of U-Pb geochronometers and growth of new zircons. Minor underformed lamprophyre dykes intruded Hop and nearby islands later in the Phanerozoic. Thus, the geology of the Rauer Islands reflects reworking and juxtaposition of unrelated rocks in a Proterozoic orogenic belt, and illustrates the important influence of relatively low-grade fluid-rock interaction on zircon U-Pb systematics in high-grade terranes.


Author(s):  
Arjun Bhattarai ◽  
Kabiraj Paudyal

Geological mapping was carried out along the Phalamdanda-Dhuwakot section of west-central Nepal in the Lesser Himalaya. The aim of geological mapping was to prospect the metallic mineral resources in the area especially to assess the geological control of mineralization as prognostic mapping and study the genesis of mineralization. The area has developed low-grade metamorphic rocks of the Nawakot Group. Geological rock units like the Kuncha Formation, Fagfog Quartzite, Dandagaon Phyllite, Nourpul Formation and Dhading Dolomite are mapped in the area. Jal Bhanjyang Thrust carries the more older rocks of the Nourpul Formation over the Dhading Dolomite. The area is highly deformed as indicated by presence of folds. Outliers of Fagfog Quartzite and Dhading Dolomite are developed at the core part of the syncline. Phalamdada iron and Anbu Khaireni as well as Dharapani copper are the major metallic deposits reported in the area. Both deposits are considered as the syngenetic in nature. Bulletin of Department of Geology, vol. 20-21, 2018, pp:59-64


Sign in / Sign up

Export Citation Format

Share Document