TEM/AEM characterization of fine-grained clay minerals in very-low-grade rocks: Evaluation of contamination by empa involving celadonite family minerals

Author(s):  
Gejing Li ◽  
D. R. Peacor ◽  
D. S. Coombs ◽  
Y. Kawachi

Recent advances in transmission electron microscopy (TEM) and analytical electron microscopy (AEM) have led to many new insights into the structural and chemical characteristics of very finegrained, optically homogeneous mineral aggregates in sedimentary and very low-grade metamorphic rocks. Chemical compositions obtained by electron microprobe analysis (EMPA) on such materials have been shown by TEM/AEM to result from beam overlap on contaminant phases on a scale below resolution of EMPA, which in turn can lead to errors in interpretation and determination of formation conditions. Here we present an in-depth analysis of the relation between AEM and EMPA data, which leads also to the definition of new mineral phases, and demonstrate the resolution power of AEM relative to EMPA in investigations of very fine-grained mineral aggregates in sedimentary and very low-grade metamorphic rocks.Celadonite, having end-member composition KMgFe3+Si4O10(OH)2, and with minor substitution of Fe2+ for Mg and Al for Fe3+ on octahedral sites, is a fine-grained mica widespread in volcanic rocks and volcaniclastic sediments which have undergone low-temperature alteration in the oceanic crust and in burial metamorphic sequences.

Author(s):  
D.I. Potter ◽  
M. Ahmed ◽  
K. Ruffing

Ion implantation, used extensively for the past decade in fabricating semiconductor devices, now provides a unique means for altering the near-surface chemical compositions and microstructures of metals. These alterations often significantly improve physical properties that depend on the surface of the material; for example, catalysis, corrosion, oxidation, hardness, friction and wear. Frequently the mechanisms causing these beneficial alterations and property changes remain obscure and much of the current research in the area of ion implantation metallurgy is aimed at identifying such mechanisms. Investigators thus confront two immediate questions: To what extent is the chemical composition changed by implantation? What is the resulting microstructure? These two questions can be investigated very fruitfully with analytical electron microscopy (AEM), as described below.


1996 ◽  
Vol 11 (5) ◽  
pp. 1244-1254 ◽  
Author(s):  
Nancy E. Lumpkin ◽  
Gregory R. Lumpkin ◽  
K. S. A. Butcher

A process for the formation of low-resistance Ni–Ge–Au ohmic contacts to n+ GaAs has been refined using multivariable screening and response surface experiments. Samples from the refined, low-resistance process (which measure 0.05 ± 0.02 Ω · mm) and the unrefined, higher resistance process (0.17 ± 0.02 Ω · mm) were characterized using analytical electron microscopy (AEM), transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), and x-ray photoemission spectroscopy (XPS) depth profiling methods. This approach was used to identify microstructural differences and compare them with electrical resistance measurements. Analytical results of the unrefined ohmic process sample reveal a heterogeneous, multiphase microstructure with a rough alloy-GaAs interface. The sample from the refined ohmic process exhibits an alloy which is homogeneous, smooth, and has a fine-grained microstructure with two uniformly distributed phases. XPS analysis for the refined ohmic process sample indicates that the Ge content is relatively depleted in the alloy (relative to the deposited Ge amount) and enriched in the GaAs. This is not evidenced in the unrefined ohmic process sample. Our data lead us to conclude that a smooth, uniform, two-phase microstructure, coupled with a shift in Ge content from the post-alloy metal to the GaAs, is important in forming low-resistance ohmic contacts.


Clay Minerals ◽  
2001 ◽  
Vol 36 (3) ◽  
pp. 307-324 ◽  
Author(s):  
M. D. Ruiz Cruz

AbstractMixed-layered phyllosilicates with composition intermediate between mica and chlorite were identified in very low-grade metaclastites from the Malàguide Complex (Betic Cordilleras, Spain), and studied by X-ray diffraction, and transmission and analytical electron microscopy. They occur both as small grains in the rock matrix, and associated with muscovitechlorite stacks. Transmission electron microscope observations revealed a transition from chlorite to ordered 1:1 interstratifications through complex 1:2 and 1:3 interstratifications. Analytical electron microscopy data indicate a composition slightly different from the sum of discrete trioctahedral chlorite and dioctahedral mica. The types of layer transitions suggest that mixed-layer formation included two main processes: (1) the replacement of a brucite sheet by a cation sheet in the chlorite structure; and (2) the precipitation of mica-like layers between the chlorite layers. The strongest diffraction lines in oriented X-ray patterns are: 12.60 Å (002), 7.98 Å (003), 4.82 Å (005) and 3.48 Å (007).


2019 ◽  
Vol 104 (10) ◽  
pp. 1469-1480 ◽  
Author(s):  
Oleg S. Vereshchagin ◽  
Sergey N. Britvin ◽  
Elena N. Perova ◽  
Aleksey I. Brusnitsyn ◽  
Yury S. Polekhovsky ◽  
...  

Abstract Gasparite-(La), La(AsO4), is a new mineral (IMA 2018-079) from Mn ores of the Ushkatyn-III deposit, Central Kazakhstan (type locality) and from alpine fissures in metamorphic rocks of the Wanni glacier, Binn Valley, Switzerland (co-type locality). Gasparite-(La) is named for its dominant lanthanide, according to current nomenclature of rare-earth minerals. The occurrences and parageneses in both localities are distinct: minute isometric grains up to 15 μm in size, associated with friedelite, jacobsite, pennantite, manganhumite series minerals (alleghanyite, sonolite), sarkinite, tilasite, and retzian-(La) are typically embedded into calcite-rhodochrosite veinlets (Ushkatyn-III deposit) vs. elongated crystals up to 2 mm in size in classical alpine fissures in two-mica gneiss without indicative associated minerals (Wanni glacier). Their chemical compositions have been studied by EDX and WDX; crystal-chemical formulas of gasparite-(La) from the Ushkatyn-III deposit (holotype specimen) and Wanni glacier (co-type specimen) are (La0.65Ce0.17Nd0.07Ca0.06Mn0.05Pr0.02)1.02[(As0.70V0.28P0.02)1.00O4] and (La0.59Ce0.37Nd0.02 Ca0.02Th0.01)1.01[(As0.81P0.16Si0.02S0.02)1.01O4], respectively. In polished sections, crystals are yellow and translucent with bright submetallic luster. Selected reflectance values R1/R2 (λ, nm) for the holotype specimen in air are: 11.19/9.05 (400), 11.45/9.44 (500), 10.85/8.81 (600), 11.23/9.08 (700). The structural characteristics of gasparite-(La) were studied by means of EBSD (holotype specimen), XRD, and SREF (co-type specimen). Gasparite-(La) has a monoclinic structure with the space group P21/n. Our studies revealed that gasparite-(La) from the Ushkatyn-III deposit and Wanni glacier have different origins. La/Ce and As/P/V ratios in gasparite-(La) may be used as an indicator of formation conditions.


1993 ◽  
Vol 66 (5) ◽  
pp. 837-848 ◽  
Author(s):  
T. Kretzschmar ◽  
K. Hummel ◽  
F. Hofer

Abstract Brass samples (thin foils or plates) were pretreated either by etching with aqueous HC1 or by rubbing with emery cloth. A mixture of cis-l,4-polybutadiene with sulfur and N,N-dicyclohexyl-2-benzothiazylsulfenamide was vulcanized in contact with the brass surfaces. The bonding layers were investigated by analytical electron microscopy (AEM). Two preparation techniques for AEM were used, namely cryo-ultramicrotomy to obtain cross sections (applied to foils), or separating ultrathin surface layers with an aqueous HCl/FeCl3 solution (applied to plates). Across the bonding layers, various crystallographic structures and chemical compositions were found, depending on the pretreatment of the brass.


1988 ◽  
Vol 25 (3) ◽  
pp. 433-441 ◽  
Author(s):  
Moira Smith

The northwestern Cascades structural province can be interpreted as an accretionary complex comprising fault-bounded blocks of pre-Tertiary metamorphic rocks of diverse age and lithologic type. This paper documents the deformation in a portion of the Chilliwack Group, a unit in this complex. The Chilliwack Group is a thick sequence of volcaniclastic sedimentary rocks, calc-alkaline volcanic rocks, and limestone that is metamorphosed to low-grade blueschist facies. The rocks underwent ductile deformation during a Late Cretaceous orogenic event, producing a subhorizontal foliation and, in appropriate lithologies, subhorizontal stretching lineations that trend N20°W. Finite strain sustained by coarse clastic rocks produced RXZ values averaging 3.5. The deformation at least partially postdates the high pressure metamorphic event, based on the presence of bent and broken high-pressure mineral grains. Although early studies postulated west-vergent thrust imbrication of units in the northwest Cascades, the N20°W direction of apparent elongation in the Chilliwack Group, consistent with the direction of motion along segments of the Shuksan fault elucidated in other more recent studies, may reflect significant, highly oblique components of convergence during formation of the western North Cascades collisional orogen.


2008 ◽  
Vol 45 (8) ◽  
pp. 871-878
Author(s):  
I. K. Pitcairn ◽  
N. T. Arndt

The Kidd–Munro assemblage, Abitibi belt, Canada, is an ultramafic–mafic–felsic volcanic sequence that contains the giant Kidd Creek volcanic-hosted massive sulfide (VMS) deposit. The Kidd basin, 1.6 km northeast of the deposit, contains pervasively brecciated pillowed and massive basalts. The breccia is distinctly different from most breccias in volcanic rocks, which form through volcanic processes or during later deformation or alteration. The Kidd Creek breccia occurs pervasively through otherwise undeformed pillow interiors and margins, and also in localized corridors of particularly intense brecciation. Clasts are angular, up to 4 cm wide, hosted in a very fine-grained matrix, and commonly show jig-saw fit texture. The chemical compositions of the breccia fragments and matrix are generally similar, although the matrix is slightly enriched in high field-strength elements (HFSE) and heavy rare-earth elements (HREE) and depleted in some mobile elements, such as Rb and Ba. The breccia contains altered basaltic clasts and fragments of in-filled amygdales and is crosscut by late-stage quartz–carbonate–sulfide veins. The observations imply that the breccia was formed in-situ, with minimal transport of material, and developed after solidification of the volcanic rocks. In-situ breccias, such as these, are known to form proximal to major fault zones, but no such structure occurs in the vicinity of the Kidd Basin. We suggest the brecciation was caused by the propagation of shock waves from explosive volcanic eruption, perhaps related to the emplacement of felsic volcanic rocks observed in the Kidd Creek Mine. The breccia was subject to enhanced hydrothermal fluid flow, perhaps linked to the formation of the ore deposit.


Clay Minerals ◽  
2003 ◽  
Vol 38 (4) ◽  
pp. 459-481 ◽  
Author(s):  
M. Do Campo ◽  
F. Nieto

AbstractThe Puncoviscana Formation, largely cropping out in NW Argentina, is mainly composed of a pelite-greywacke turbidite sequence affected by incipient regional metamorphism and polyphase deformation. Metapelites, composed mainly of quartz, albite, dioctahedral mica and chlorite, were sampled in the Lules-Puncoviscana and Choromoro belts. Lattice-fringe images, selected area electron diffraction and analytical electron microscopy analyses, coupled with previous data from white mica crystallinity index, indicate a state of reaction progress for Puncoviscana slates consistent with medium anchizone- to epizone-grade metamorphism. The 2Mpolytype prevails in dioctahedral micas, coexisting in a few cases with the 1Mdpolytype as a consequence of lack of equilibrium. The 2Mpolytype coexists with 3Tin two slates and long-range four-layer and ten-layer stacking sequences were identified in another sample. Samples with 3Tand long-range stacking sequences presentbvalues characteristic of intermediate–high pressure metamorphism and ordered chlorites (1L, 2L, 3Land 7L) prevail.Based on the Si contents of dioctahedral micas and considering peak temperatures of ∼350 –400ºC, pressures from 5 kbar and 5 –7 kbar were derived for metapelites from the Lules- Puncoviscana and Choromoro belts, respectively. These values agree with facies series derived from thebvalues. Micas with a wide range of phengitic substitution, as evidenced by Fe + Mg and Si contents, coexist. These variations could not arise from the disturbing effect of detrital white K-mica because TEM evidence indicates that they are absent or represent <10% of the mica population. Thus, compositional variations suggest that dioctahedral micas of individual slates crystallized at different pressure conditions in response to theP-Tpath of the metamorphism. Moreover, in several biotite-free slates the illite crystallinity (IC) values lead to an underestimation of the metamorphic grade attained in these rocks.The coexistence of IC corresponding to anchizone and the occurrence of biotite in some slates and felsic metavolcanic rocks intercalated in the Puncoviscana metasediments are interpreted to be the result of a metamorphic path including a relatively high-pressure/ low-temperature (HP/LT) event, followed by a lower-pressure overprint possibly at higher temperatures than the HP/LTevent. Small micas formed during the high-pressure stage would prevail in the <2 mm fraction, producing anchizone IC.


1988 ◽  
Vol 136 ◽  
Author(s):  
J. C. Qian ◽  
E. E. Lachowski ◽  
F. P. Glasser

ABSTRACTA suite of three fly ashes, National Bureau of Standards* Standard Reference Materials (SRMs) 2689, 2690 and 2691, was studied by transmission electron microscopy and by analytical electron microscopy (aem): sample preparation techniques are described. The chemical compositions of the glassy phase, analyzed by aem, showed a wide dispersion of values although the mean composition of the glass remained close to that of the whole fly ash.The microstructure of these materials is complex: besides crystalline inclusions, the aluminasilica glasses have undergone phase separation on a nanometer scale, and consist of two glassy phases. Since liquid-liquid phase separation has also been found in British fly ashes, it appears to be a characteristic feature of the glassy phase in Class F ashes and is also encountered in occasional Al-Si rich particles in Class C ashes. High iron content glass was found in fly ash SRM 2689, and its phase separation and crystallization were investigated.


Sign in / Sign up

Export Citation Format

Share Document