On some boundary value problems in the class of yk-analytic functions

1973 ◽  
Vol 25 (1) ◽  
pp. 37-45 ◽  
Author(s):  
N. A. Pakhareva ◽  
M. M. Belova
2007 ◽  
Vol 14 (3) ◽  
pp. 581-595
Author(s):  
Wolfgang Tutschke

Abstract Originally I. N. Vekua's theory of generalized analytic functions dealt only with linear systems of partial differential equations in the plane. The present paper shows why I. N. Vekua's ideas are also fruitful for the solution of linear and non-linear partial differential equations in higher dimensions. One of the highlights of the theory of generalized analytic functions in the plane is the reduction of boundary value problems for general (linear or nonlinear) equations to boundary value problems for holomorphic functions using the well-known weakly singular and strongly singular 𝑇- and П-operators, respectively. The present paper is mainly aimed at reducing boundary value problems in higher dimensions to boundary value problems for monogenic functions.


2015 ◽  
Vol 2015 (1) ◽  
Author(s):  
Pei Dang ◽  
Jinyuan Du ◽  
Tao Qian

Author(s):  
A.V. Yudenkov ◽  
A.M. Volodchenkov

The boundary problems of the complex-variable function theory are effectively used while investigating equilibrium of homogeneous elastic mediums. The most complicated systems of the boundary value problems correspond to the case when an elastic body exhibits anisotropic properties. Anisotropy of the medium results in the drift of boundary conditions of the function that in general disrupts analyticity of the functions of interest. The paper studies systems of the boundary value problems with drift for analytic vectors corresponding to the primal elastic problems (first, second and mixed problems). Systems of analytic vectors with drift are reduced to equivalent systems of Hilbert boundary value problems for analytic functions with weak singularity integrators. The obtained general solution of the primal boundary value problems for the anisotropic theory of elasticity allows us to check the above problems for stability with respect to perturbations of boundary value conditions and contour shape. The research is relevant as there is necessity to apply approximate numerical methods to the boundary value problems with drift. The main research result comes to be a proof of stability of the systems of the vector boundary value problems with drift for analytic functions on the Hölder space corresponding to the primal problems of the elastic theory for anisotropic bodies in the case of change in the boundary value conditions and contour shape.


2021 ◽  
Vol 18 (1) ◽  
pp. 12-36
Author(s):  
Vladimir Gutlyanskii ◽  
Olga Nesmelova ◽  
Vladimir Ryazanov ◽  
Artyem Yefimushkin

The study of the Dirichlet problem in the unit disk $\mathbb D$ with arbitrary measurable data for harmonic functions is due to the famous dissertation of Luzin [31]. Later on, the known monograph of Vekua \cite{Ve} has been devoted to boundary-value problems (only with H\"older continuous data) for the generalized analytic functions, i.e., continuous complex valued functions $h(z)$ of the complex variable $z=x+iy$ with generalized first partial derivatives by Sobolev satisfying equations of the form $\partial_{\bar z}h\, +\, ah\, +\ b{\overline h}\, =\, c\, ,$ where it was assumed that the complex valued functions $a,b$ and $c$ belong to the class $L^{p}$ with some $p>2$ in smooth enough domains $D$ in $\mathbb C$. The present paper is a natural continuation of our previous articles on the Riemann, Hilbert, Dirichlet, Poincar\'{e} and, in particular, Neumann boundary-value problems for quasiconformal, analytic, harmonic, and the so-called $A-$harmonic functions with boundary data that are measurable with respect to logarithmic capacity. Here, we extend the corresponding results to the generalized analytic functions $h:D\to\mathbb C$ with the sources $g$ : $\partial_{\bar z}h\ =\ g\in L^p$, $p>2\,$, and to generalized harmonic functions $U$ with sources $G$ : $\triangle\, U=G\in L^p$, $p>2\,$. This paper contains various theorems on the existence of nonclassical solutions of the Riemann and Hilbert boundary-value problems with arbitrary measurable (with respect to logarithmic capacity) data for generalized analytic functions with sources. Our approach is based on the geometric (theoretic-functional) interpretation of boundary-values in comparison with the classical operator approach in PDE. On this basis, it is established the corresponding existence theorems for the Poincar\'{e} problem on directional derivatives and, in particular, for the Neumann problem to the Poisson equations $\triangle\, U=G$ with arbitrary boundary data that are measurable with respect to logarithmic capacity. These results can be also applied to semi-linear equations of mathematical physics in anisotropic and inhomogeneous media.


Sign in / Sign up

Export Citation Format

Share Document