Periodic solutions of nonlinear systems of differential-operator equations with impulse action

1991 ◽  
Vol 43 (9) ◽  
pp. 1174-1177 ◽  
Author(s):  
Raad Noori Butris





2006 ◽  
Vol 6 (3) ◽  
pp. 269-290 ◽  
Author(s):  
B. S. Jovanović ◽  
S. V. Lemeshevsky ◽  
P. P. Matus ◽  
P. N. Vabishchevich

Abstract Estimates of stability in the sense perturbation of the operator for solving first- and second-order differential-operator equations have been obtained. For two- and three-level operator-difference schemes with weights similar estimates hold. Using the results obtained, we construct estimates of the coefficient stability for onedimensional parabolic and hyperbolic equations as well as for the difference schemes approximating the corresponding differential problems.



Author(s):  
S. Pernot ◽  
C. H. Lamarque

Abstract A Wavelet-Galerkin procedure is introduced in order to obtain periodic solutions of multidegrees-of-freedom dynamical systems with periodic time-varying coefficients. The procedure is then used to study the vibrations of parametrically excited mechanical systems. As problems of stability analysis of nonlinear systems are often reduced after linearization to problems involving linear differential systems with time-varying coefficients, we demonstrate the method provides efficient practical computations of Floquet exponents and consequently allows to give estimators for stability/instability levels. A few academic examples illustrate the relevance of the method.



Sign in / Sign up

Export Citation Format

Share Document