Existence of discontinuous solutions for simplest semidefinite problems of variational calculus

1970 ◽  
Vol 7 (1) ◽  
pp. 42-47 ◽  
Author(s):  
V. N. Koshelev ◽  
S. F. Morozov
Universe ◽  
2020 ◽  
Vol 6 (6) ◽  
pp. 71 ◽  
Author(s):  
Valerio Faraoni

Several classic one-dimensional problems of variational calculus originating in non-relativistic particle mechanics have solutions that are analogues of spatially homogeneous and isotropic universes. They are ruled by an equation which is formally a Friedmann equation for a suitable cosmic fluid. These problems are revisited and their cosmic analogues are pointed out. Some correspond to the main solutions of cosmology, while others are analogous to exotic cosmologies with phantom fluids and finite future singularities.


Acta Numerica ◽  
2020 ◽  
Vol 29 ◽  
pp. 701-762
Author(s):  
Chi-Wang Shu

Essentially non-oscillatory (ENO) and weighted ENO (WENO) schemes were designed for solving hyperbolic and convection–diffusion equations with possibly discontinuous solutions or solutions with sharp gradient regions. The main idea of ENO and WENO schemes is actually an approximation procedure, aimed at achieving arbitrarily high-order accuracy in smooth regions and resolving shocks or other discontinuities sharply and in an essentially non-oscillatory fashion. Both finite volume and finite difference schemes have been designed using the ENO or WENO procedure, and these schemes are very popular in applications, most noticeably in computational fluid dynamics but also in other areas of computational physics and engineering. Since the main idea of the ENO and WENO schemes is an approximation procedure not directly related to partial differential equations (PDEs), ENO and WENO schemes also have non-PDE applications. In this paper we will survey the basic ideas behind ENO and WENO schemes, discuss their properties, and present examples of their applications to different types of PDEs as well as to non-PDE problems.


Author(s):  
Javier Bonet ◽  
Antonio J. Gil

AbstractThis paper presents mathematical models of supersonic and intersonic crack propagation exhibiting Mach type of shock wave patterns that closely resemble the growing body of experimental and computational evidence reported in recent years. The models are developed in the form of weak discontinuous solutions of the equations of motion for isotropic linear elasticity in two dimensions. Instead of the classical second order elastodynamics equations in terms of the displacement field, equivalent first order equations in terms of the evolution of velocity and displacement gradient fields are used together with their associated jump conditions across solution discontinuities. The paper postulates supersonic and intersonic steady-state crack propagation solutions consisting of regions of constant deformation and velocity separated by pressure and shear shock waves converging at the crack tip and obtains the necessary requirements for their existence. It shows that such mathematical solutions exist for significant ranges of material properties both in plane stress and plane strain. Both mode I and mode II fracture configurations are considered. In line with the linear elasticity theory used, the solutions obtained satisfy exact energy conservation, which implies that strain energy in the unfractured material is converted in its entirety into kinetic energy as the crack propagates. This neglects dissipation phenomena both in the material and in the creation of the new crack surface. This leads to the conclusion that fast crack propagation beyond the classical limit of the Rayleigh wave speed is a phenomenon dominated by the transfer of strain energy into kinetic energy rather than by the transfer into surface energy, which is the basis of Griffiths theory.


Author(s):  
Om P. Agrawal ◽  
M. Mehedi Hasan ◽  
X. W. Tangpong

Fractional derivatives (FDs) or derivatives of arbitrary order have been used in many applications, and it is envisioned that in the future they will appear in many functional minimization problems of practical interest. Since fractional derivatives have such properties as being non-local, it can be extremely challenging to find analytical solutions for fractional parametric optimization problems, and in many cases, analytical solutions may not exist. Therefore, it is of great importance to develop numerical methods for such problems. This paper presents a numerical scheme for a linear functional minimization problem that involves FD terms. The FD is defined in terms of the Riemann-Liouville definition; however, the scheme will also apply to Caputo derivatives, as well as other definitions of fractional derivatives. In this scheme, the spatial domain is discretized into several subdomains and 2-node one-dimensional linear elements are adopted to approximate the solution and its fractional derivative at point within the domain. The fractional optimization problem is converted to an eigenvalue problem, the solution of which leads to fractional orthogonal functions. Convergence study of the number of elements and error analysis of the results ensure that the algorithm yields stable results. Various fractional orders of derivative are considered, and as the order approaches the integer value of 1, the solution recovers the analytical result for the corresponding integer order problem.


2021 ◽  
pp. 108271
Author(s):  
Ruoyin Jing ◽  
Ran Gao ◽  
Zhiheng Zhang ◽  
Mengchao Liu ◽  
Yifan Liu ◽  
...  

1998 ◽  
Vol 34 (4) ◽  
pp. 489-505
Author(s):  
I. V. Sergienko ◽  
V. S. Deineka ◽  
V. V. Skopetskii

Sign in / Sign up

Export Citation Format

Share Document