scholarly journals Mathematical models of supersonic and intersonic crack propagation in linear elastodynamics

Author(s):  
Javier Bonet ◽  
Antonio J. Gil

AbstractThis paper presents mathematical models of supersonic and intersonic crack propagation exhibiting Mach type of shock wave patterns that closely resemble the growing body of experimental and computational evidence reported in recent years. The models are developed in the form of weak discontinuous solutions of the equations of motion for isotropic linear elasticity in two dimensions. Instead of the classical second order elastodynamics equations in terms of the displacement field, equivalent first order equations in terms of the evolution of velocity and displacement gradient fields are used together with their associated jump conditions across solution discontinuities. The paper postulates supersonic and intersonic steady-state crack propagation solutions consisting of regions of constant deformation and velocity separated by pressure and shear shock waves converging at the crack tip and obtains the necessary requirements for their existence. It shows that such mathematical solutions exist for significant ranges of material properties both in plane stress and plane strain. Both mode I and mode II fracture configurations are considered. In line with the linear elasticity theory used, the solutions obtained satisfy exact energy conservation, which implies that strain energy in the unfractured material is converted in its entirety into kinetic energy as the crack propagates. This neglects dissipation phenomena both in the material and in the creation of the new crack surface. This leads to the conclusion that fast crack propagation beyond the classical limit of the Rayleigh wave speed is a phenomenon dominated by the transfer of strain energy into kinetic energy rather than by the transfer into surface energy, which is the basis of Griffiths theory.

2021 ◽  
Vol 14 (1) ◽  
pp. 114-122
Author(s):  
Volodymyr Shymanskyi ◽  
Yaroslav Sokolovskyy

Aims: The aim of this study was to develop the mathematical models of the linear elasticity theory of biomaterials by taking into account their fractal structure. This study further aimed to construct a variational formulation of the problem, obtain the main relationships of the finite element method to calculate the rheological characteristics of a biomaterial with a fractal structure, and develop application software for calculating the components of the stress-strain state of biomaterials while considering their fractal structure. The obtained results were analyzed. Background: The development of adequate mathematical models of the linear elasticity theory for biomaterials with a fractal structure is an urgent scientific task. Finding its solution will make it possible to analyze the rheological behavior of biomaterials exposed to external loads by taking into account the existing effects of memory, spatial non-locality, self-organization, and deterministic chaos in the material. Objective: The objective of this study was the deformation process of biomaterials with a fractal structure under external load. Methods: The equations of the linear elasticity theory for the construction of the mathematical models of the deformation process of biomaterials under external load were used. Mathematical apparatus of integro-differentiation of fractional order to take into account the fractal structure of the biomaterial was used. A variational formulation of the linear elasticity problem while taking into account the fractal structure of the biomaterial was formulated. The finite element method with a piecewise linear basis for finding an approximate solution to the problem was used. Results: The main relations of the linear elasticity problem, which takes into account the fractal structure of the biomaterial, were obtained. A variational formulation of the problem was constructed. The main relations of the finite-element calculation of the linear elasticity problem of a biomaterial with a fractal structure using a piecewise-linear basis are found. The main components of the stress-strain state of the biomaterial exposed to external loads are found. Conclusion: Using the mathematical apparatus of integro-differentiation of fractional order in the construction of the mathematical models of the deformation process of biomaterials with a fractal structure makes it possible to take into account the existing effects of memory, spatial non-locality, self-organization, and deterministic chaos in the material. Also, this approach makes it possible to determine the residual stresses in the biomaterial, which play an important role in the appearance of stresses during repeated loads.


Author(s):  
Georges Griso ◽  
Larysa Khilkova ◽  
Julia Orlik ◽  
Olena Sivak

AbstractIn this paper, we study the asymptotic behavior of an $\varepsilon $ ε -periodic 3D stable structure made of beams of circular cross-section of radius $r$ r when the periodicity parameter $\varepsilon $ ε and the ratio ${r/\varepsilon }$ r / ε simultaneously tend to 0. The analysis is performed within the frame of linear elasticity theory and it is based on the known decomposition of the beam displacements into a beam centerline displacement, a small rotation of the cross-sections and a warping (the deformation of the cross-sections). This decomposition allows to obtain Korn type inequalities. We introduce two unfolding operators, one for the homogenization of the set of beam centerlines and another for the dimension reduction of the beams. The limit homogenized problem is still a linear elastic, second order PDE.


1993 ◽  
Vol 48 (10) ◽  
pp. 6999-7002 ◽  
Author(s):  
Wenge Yang ◽  
Renhui Wang ◽  
Di-hua Ding ◽  
Chengzheng Hu

Author(s):  
Arash Kheyraddini Mousavi ◽  
Seyedhamidreza Alaie ◽  
Maheshwar R. Kashamolla ◽  
Zayd Chad Leseman

An analytical Mixed Mode I & II crack propagation model is used to analyze the experimental results of stiction failed micro cantilevers on a rigid substrate and to determine the critical strain energy release rate (adhesion energy). Using nonlinear beam deflection theory, the shape of the beam being peeled off of a rigid substrate can be accurately modeled. Results show that the model can fit the experimental data with an average root mean square error of less than 5 ran even at relatively large deflections which happens in some MEMS applications. The effects of surface roughness and/or debris are also explored and contrasted with perfectly (atomically) flat surfaces. Herein it is shown that unlike the macro-scale crack propagation tests, the surface roughness and debris trapped between the micro cantilever and the substrate can drastically effect the energy associated with creating unit new surface areas and also leads to some interesting phenomena. The polysilicon micro cantilever samples used, were fabricated by SUMMIT V™ technology in Sandia National Laboratories and were 1000 μm long, 30 μm wide and 2.6 μm thick.


Author(s):  
Андрей Геннадьевич Деменков ◽  
Геннадий Георгиевич Черных

С применением математической модели, включающей осредненные уравнения движения и дифференциальные уравнения переноса нормальных рейнольдсовых напряжений и скорости диссипации, выполнено численное моделирование эволюции безымпульсного закрученного турбулентного следа с ненулевым моментом количества движения за телом вращения. Получено, что начиная с расстояний порядка 1000 диаметров от тела течение становится автомодельным. На основе анализа результатов численных экспериментов построены упрощенные математические модели дальнего следа. Swirling turbulent jet flows are of interest in connection with the design and development of various energy and chemical-technological devices as well as both study of flow around bodies and solving problems of environmental hydrodynamics, etc. An interesting example of such a flow is a swirling turbulent wake behind bodies of revolution. Analysis of the known works on the numerical simulation of swirling turbulent wakes behind bodies of revolution indicates lack of knowledge on the dynamics of the momentumless swirling turbulent wake. A special case of the motion of a body with a propulsor whose thrust compensates the swirl is studied, but there is a nonzero integral swirl in the flow. In previous works with the participation of the authors, a numerical simulation of the initial stage of the evolution of a swirling momentumless turbulent wake based on a hierarchy of second-order mathematical models was performed. It is shown that a satisfactory agreement of the results of calculations with the available experimental data is possible only with the use of a mathematical model that includes the averaged equations of motion and differential equations for the transfer of normal Reynolds stresses along the rate of dissipation. In the present work, based on the above mentioned mathematical model, a numerical simulation of the evolution of a far momentumless swirling turbulent wake with a nonzero angular momentum behind the body of revolution is performed. It is shown that starting from distances of the order of 1000 diameters from the body the flow becomes self-similar. Based on the analysis of the results of numerical experiments, simplified mathematical models of the far wake are constructed. The authors dedicate this work to the blessed memory of Vladimir Alekseevich Kostomakha.


2014 ◽  
Vol 8 (1) ◽  
pp. 229-257
Author(s):  
E. H. Bair ◽  
R. Simenhois ◽  
A. van Herwijnen ◽  
K. Birkeland

Abstract. Propagation tests are used to assess the likelihood of crack propagation in a snowpack, yet little is known about how test length affects propagation. Guidelines suggest beams with lengths around 1 m for Extended Column Tests (ECTs) and Propagation Saw Tests (PSTs). To examine how test length affects propagation, we performed 163 ECTs and PSTs 1 to 10 m long. On days with full crack propagation in 1.0 to 1.5 m tests, we then made videos of tests 2 to 10 m long. We inserted markers for particle tracking to measure collapse amplitude, collapse wave speed, and wavelength. We also used a finite element model to simulate the strain energy release rate at fixed crack lengths. We find that: (1) the proportion of tests with full propagation decreased with test length; (2) collapse was greater at the ends of the beams than in the centers; (3) collapse amplitudes in the longer tests were consistent with the shorter tests and did not reach a constant value; (4) collapse wavelengths in the longer tests were around 3 m, 2 × greater than what is predicted by the anticrack model. Based on our field tests and FE models, we conclude that the shorter tests fully propagated more frequently because of increased stress concentration from the far edge. The FE model suggests this edge effect occurs for PSTs up to 2 m long or a crack to beam length ratio ≥ 0.20. Our results suggest that ECT and PST length guidelines may need to be revisited.


Author(s):  
Joseph H. LaCasce

The relations between the kinetic energy spectrum and the second order longitudinal structure function in two dimensions are derived, and several examples are considered. The forward conversion (from spectrum to structure function) is illustrated first with idealized power law spectra, representing turbulent inertial ranges. The forward conversion is also applied to the zonal kinetic energy spectrum of Nastrom and Gage (1985) and the result agrees well with the longitudinal structure function of Lindborg (1999). The inverse conversion (from structure function to spectrum) is tested with data from 2D turbulence simulations. When applied to the theoretical structure function (derived from the forward conversion of the spectrum), the result closely resembles the original spectrum, except at the largest wavenumbers. However the inverse conversion is much less successful when applied to the structure function obtained from pairs of particles in the flow. This is because the inverse conversion favors large pair separations, which are typically noisy with particle data. Fitting the structure function to a polynomial improves the result, but not sufficiently to distinguish the correct inertial range dependencies. Furthermore the inversion of non-local spectra is largely unsuccessful. Thus it appears that focusing on structure functions with Lagrangian data is preferable to estimating spectra.


2022 ◽  
pp. 108128652110679
Author(s):  
Emilio Turco

In this contribution, a novel nonlinear micropolar beam model suitable for metamaterials design in a dynamics framework is presented and discussed. The beam model is formulated following a completely discrete approach and it is fully defined by its Lagrangian, i.e., by the kinetic energy and by the potential of conservative forces. Differently from Hencky’s seminal work, which considers only flexibility to compute the buckling load for rectilinear and planar Euler–Bernoulli beams, the proposed model is fully three-dimensional and considers both the extensional and shear deformability contributions to the strain energy and translational and rotational kinetic energy terms. After having introduced the model formulation, some simulations obtained with a numerical integration scheme are presented to show the capabilities of the proposed beam model.


Sign in / Sign up

Export Citation Format

Share Document