Systems of singular integral equations of certain mixed boundary-value problems of mathematical physics

1990 ◽  
Vol 48 (2) ◽  
pp. 144-152 ◽  
Author(s):  
Yu. V. Gandel' ◽  
T. S. Polyanskaya
Author(s):  
John F. Ahner ◽  
John S. Lowndes

AbstractAlgorithms are developed by means of which certain connected pairs of Fredholm integral equations of the first and second kinds can be converted into Fredholm integral equations of the second kind. The methods are then used to obtain the solutions of two different sets of triple integral equations tht occur in mixed boundary value problems involving Laplace' equation and the wave equation respectively.


2018 ◽  
Vol 24 (8) ◽  
pp. 2536-2557
Author(s):  
S Cheshmehkani ◽  
M Eskandari-Ghadi

In certain mixed boundary value problems, Hankel integral transforms are applied and subsequently dual integral equations involving Bessel functions have to be solved. In the literature, if possible by employing the Noble’s multiplying factor method, these dual integral equations are usually converted to the second kind Fredholm Integral Equations (FIEs) and solved either analytically or numerically, respectively, for simple or complicated kernels. In this study, the multiplying factor method is extended to convert the dual integral equations both to the first and the second kind FIEs, and the conditions for converting to each kind of FIE are discussed. Furthermore, it is shown that under some simple circumstances, many mixed boundary value problems arising from either elastostatics or elastodynamics can be converted to the well-posed first kind FIE, which may be solved analytically or numerically. Main criteria for well-posedness of FIEs of the first kind in such problems are also presented. Noble’s original method is restricted to some limited conditions, which are extended here for both first and second kind FIEs to cover a wider range of dual integral equations encountered in engineering mixed boundary value problems.


2017 ◽  
Vol 20 (10) ◽  
pp. 17-25
Author(s):  
S.A. Aldashev

The boundary value problems for second order elliptic equations in domains with edges are well studied. For elliptic equations, boundary-value problems on the plane were shown to be well posed by using methods from the theory of analytic functions of complex variable. When the number of independent variables is greater than two, difficulties of fundamental nature arise. Highly attractive and convenient method of singular integral equations can hardly be applied, because the theory of multidimensional singular integral equations is still incomplete. In this paper with the help of the method suggested by the author, the unique solvability is shown and explicit form of classical solution of Poincare problem in a cylindrical domain for a one class of multidimensional elliptic equations is received.


Sign in / Sign up

Export Citation Format

Share Document