dispersal model
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 13)

H-INDEX

16
(FIVE YEARS 3)

Author(s):  
Thomas Bøhn ◽  
Rune Nilsen ◽  
Karl Øystein Gjelland ◽  
Martin Biuw ◽  
Anne Dagrun Sandvik ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuan-Chih Su ◽  
Cheng-Bin Lee ◽  
Tien-Joung Yiu ◽  
Bo-Jein Kuo

AbstractThe presence of the field border (FB), such as roadways or unplanted areas, between two fields is common in Asian farming system. This study evaluated the effect of the FB on the cross-pollination (CP) and predicted the CP rate in the field considering and not considering FB. Three experiments including 0, 6.75, and 7.5 m width of the FB respectively were conducted to investigate the effect of distance and the FB on the CP rate. The dispersal models combined kernel and observation model by calculating the parameter of observation model from the output of kernel. These models were employed to predict the CP rate at different distances. The Bayesian method was used to estimate parameters and provided a good prediction with uncertainty. The highest average CP rates in the field with and without FB were 74.29% and 36.12%, respectively. It was found that two dispersal models with the FB effect displayed a higher ability to predict average CP rates. The correlation coefficients between actual CP rates and CP rates predicted by the dispersal model combined zero-inflated Poisson observation model with compound exponential kernel and modified Cauchy kernel were 0.834 and 0.833, respectively. Furthermore, the predictive uncertainty was reducing using the dispersal models with the FB effect.


The Holocene ◽  
2021 ◽  
pp. 095968362110417
Author(s):  
Martin Theuerkauf ◽  
John Couwenberg

Pollen productivity estimates (PPEs) are a key parameter for quantitative land-cover reconstructions from pollen data. PPEs are commonly estimated using modern pollen-vegetation data sets and the extended R-value (ERV) model. Prominent discrepancies in the existing studies question the reliability of the approach. We here propose an implementation of the ERV model in the R environment for statistical computing, which allows for simplified application and testing. Using simulated pollen-vegetation data sets, we explore sensitivity of ERV application to (1) number of sites, (2) vegetation structure, (3) basin size, (4) noise in the data, and (5) dispersal model selection. The simulations show that noise in the (pollen) data and dispersal model selection are critical factors in ERV application. Pollen count errors imply prominent PPE errors mainly for taxa with low counts, usually low pollen producers. Applied with an unsuited dispersal model, ERV tends to produce wrong PPEs for additional taxa. In a comparison of the still widely applied Prentice model and a Lagrangian stochastic model (LSM), errors are highest for taxa with high and low fall speed of pollen. The errors reflect the too high influence of fall speed in the Prentice model. ERV studies often use local scale pollen data from for example, moss polsters. Describing pollen dispersal on his local scale is particularly complex due to a range of disturbing factors, including differential release height. Considering the importance of the dispersal model in the approach, and the very large uncertainties in dispersal on short distance, we advise to carry out ERV studies with pollen data from open areas or basins that lack local pollen deposition of the taxa of interest.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243047
Author(s):  
Kumbirai M. Zingore ◽  
George Sithole ◽  
Elfatih M. Abdel-Rahman ◽  
Samira A. Mohamed ◽  
Sunday Ekesi ◽  
...  

The peach fruit fly Bactrocera zonata (Saunders) (Diptera: Tephritidae) is an important invasive species causing substantial losses to the horticulture industry worldwide. Despite the severe economic impact caused by this pest in its native and invaded range, information on its potential range expansion under changing climate remains largely unknown. In this study, we employed maximum entropy (MaxEnt) modeling approach to predict the global potential climatic suitability of B. zonata under current climate and four Representative Concentration Pathways (RCPs) for the year 2050. Outputs from MaxEnt were merged with Spatial Production Allocation Model. A natural dispersal model using Gaussian dispersal kernel was developed. The Areas Under Curves generated by MaxEnt were greater than 0.92 for both current and future climate change scenarios, indicating satisfactory performances of the models. Mean temperature of the coldest quarter, precipitation of driest month and temperature seasonality significantly influenced the potential establishment of B. zonata. The models indicated high climatic suitability in tropical and subtropical areas in Asia and Africa, where the species has already been recorded. Suitable areas were predicted in West, East and Central Africa and to a lesser extent in Central and South America. Future climatic scenarios models, RCP 4.5 and 8.5 show significant potential range expansion of B. zonata in Western Sahara, while RCP 4.5 highlighted expansion in Southern Africa. Contrarily, RCP 2.6 showed considerable decrease in B. zonata range expansion in Central, East and West Africa. There was increased climatic suitability of B. zonata in Egypt and Middle East under RCP 6.0. The dispersal model revealed that B. zonata could spread widely within its vicinity with decreasing infestation rates away from the source points. Our findings can help to guide biosecurity agencies in decision-making and serve as an early warning tool to safeguard against the pest invasion into unaffected areas.


2020 ◽  
Vol 268 (12) ◽  
pp. 7453-7479
Author(s):  
Claudianor O. Alves ◽  
Natan de Assis Lima ◽  
Marco A.S. Souto

Author(s):  
Zakir Hossine ◽  
Md. Kamrujjaman

A reaction-diffusion model is put forward which is capable of generating chemical maps whose concentration contours are similar to the patterns seen on the flanks of zebras, leopards and other mammals. Initially, this type of reaction diffusion kinetics model was introduced by Turing and later Murray applied it to animal coat patterns. Among many chemical reaction mechanism, we consider Schnackenberg reaction mechanism in details and show that the geometry and scale of the domain, the relevant part of the integument, during the time of laying down plays a crucial role in the structural patterns which result. Patterns which exhibit a limited randomness are obtained for a selection of geometries. Finally the system was solved numerically using finite difference method.


Sign in / Sign up

Export Citation Format

Share Document