Rate-of-convergence bound for difference schemes for the system of equilibrium equations of a rigidly clamped nonhomogeneous anisotropic elastic solid

1993 ◽  
Vol 63 (5) ◽  
pp. 517-521
Author(s):  
S. A. Voitsekhovskii ◽  
V. M. Kalinin ◽  
V. L. Makarov





1968 ◽  
Vol 5 (2) ◽  
pp. 363-406 ◽  
Author(s):  
G. W. Hedstrom


2000 ◽  
Author(s):  
I. J. Rao

Abstract In this paper we simulate the film blowing process using a model developed to study crystallization in polymers (see Rao (1999), Rao and Rajagopal (2000b)). The framework was developed to generate mathematical models in a consistent manner that are capable of simulating the crystallization process in polymers. During crystallization the polymer transitions from a fluid like state to a solid like state. This transformation usually takes place while the polymer undergoes simultaneous cooling and deformation, as in film blowing. Specific models are generated by choosing forms for the internal energy, entropy and the rate of dissipation. The second law of thermodynamics along with the assumption of maximization of dissipation is used to determine constitutive forms for the stress tensor and the rate of crystallization. The polymer melt is modeled as a rate type viscoelastic fluid and the crystalline solid polymer is modeled as an anisotropic elastic solid. The mixture region, where in the material transitions from a melt to a semi-crystalline solid, is modeled as a mixture of a viscoelastic fluid and an elastic solid. The anisotropy of the crystalline phase and consequently that of the final solid depends on the deformation in the melt during crystallization, a fact that has been known for a long time and has been exploited in polymer processing. The film blowing process is simulated using a generalized Maxwell model for the melt and an anisotropic elastic solid for the crystalline phase. The results of the simulation agree qualitatively with experimental observations and the methodology described provides a framework in which the film blowing problem can be analyzed.



The discussion in a previous paper (Oldroyd 1950), on the invariance properties required of the equations of state of a homogeneous continuum, is extended by taking into account thermodynamic restrictions on the form of the equations, in the case of an elastic solid deformed from an unstressed equilibrium configuration. The general form of the finite strainstress-temperature relations, expressed in terms of a free-energy function, is deduced without assuming that the material is isotropic. The results of other authors based on the assumption of isotropy are shown to follow as particular cases. The equations of state are derived by considering quasi-static changes in an elastic solid continuum; the results then apply to non-ideally elastic solids in equilibrium, or subjected to quasi-static changes only, and to ideally elastic solids in general motion. A necessary and sufficient compatibility condition for the finite strains at different points of a continuum is also derived. As a simple illustration of the derivation and use of equations of state involving anisotropic physical constants, the torsion of an anisotropic cylinder is discussed briefly.



2006 ◽  
Vol 11 (6) ◽  
pp. 642-654
Author(s):  
Radu Mitric ◽  
Christian Constanda

A theory of bending of elastic plates is considered, in which the effect of transverse shear deformation and transverse normal strain are taken into account through a specific form of the displacement field. It is shown that the system of equilibrium equations is elliptic and that Betti and Somigliana formulae can be established, which permit the solution of the interior and exterior Dirichlet and Neumann problems by means of boundary integral equation methods.



Aerospace ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 21
Author(s):  
Phillip Burgers

An extant bird resorts to flapping and running along its take-off run to generate lift and thrust in order to reach the minimum required wing velocity speed required for lift-off. This paper introduces the replication hypothesis that posits that the variation of lift relative to the thrust generated by the flapping wings of an extant bird, along its take-off run, replicates the variation of lift relative to the thrust by the flapping wings of a protobird as it evolves towards sustained flight. The replication hypothesis combines experimental data from extant birds with evidence from the paleontological record of protobirds to come up with a physics-based model of its evolution towards sustained flight while scaling down the time span from millions of years to a few seconds. A second hypothesis states that the vertical and horizontal forces acting on a protobird when it first encounters lift-off are in equilibrium as the protobird exerts its maximum available power for flapping, equaling its lift with its weight, and its thrust with its drag.





Sign in / Sign up

Export Citation Format

Share Document