Cytopathogenic propagation of poliomyelitis virus in normal and leukemic guinea pig spleen cell cultures

1961 ◽  
Vol 11 (1) ◽  
pp. 176-181 ◽  
Author(s):  
Claus W. Jungeblut ◽  
Helen Kodza ◽  
Eiichi Furusawa
1986 ◽  
Vol 13 (6) ◽  
pp. 289-294
Author(s):  
Ewa Brzezińska-Błaszczyk ◽  
Małgorzata Czuwaj ◽  
Teresa Michoń
Keyword(s):  

F1000Research ◽  
2020 ◽  
Vol 8 ◽  
pp. 1597
Author(s):  
Adriana E. Kajon ◽  
Xiaoxin Li ◽  
Gabriel Gonzalez ◽  
Susan Core ◽  
Helga Hofmann-Sieber ◽  
...  

Background:  The lack of adequate in vitro systems to isolate and propagate guinea pig adenovirus (GPAdV), a prevalent cause of respiratory illness of varaible severity in laboratory guinea pig colonies worldwide, has precluded its formal characterization to allow for the development of comprehensive diagnostic assays, and for the execution of complex pathogenesis and basic virology studies. Methods: Two strains of GPAdV were isolated in guinea pig (Cavia porcellus) cell cultures from frozen archival infected animal tissue originated from colony outbreaks of pneumonia in Australia and the Czech Republic in 1996. Results: Commercially available guinea pig cell lines from colorectal carcinoma (GPC-16), fetal fibroblast (104-C1) and lung fibroblast (JH4 C1), and the tracheal epithelial cell line GPTEC-T developed in this study were able to support viral infection and early propagation. Sufficient viral DNA was recovered from cell cultures to PCR-amplify and obtain sequence data for the complete hexon gene and partial DNA polymerase and penton base genes. Phylogenetic analysis for the three regions of the genome provided strong evidence confirming GPAdV as a unique species in the genus Mastadenovirus. Conclusions: This study demonstrated the feasibility of propagating GPAdV in cultures of immortalized lines of GP cells of a variety of types, thus establishing a critical foundation for the development of a robust culture platform for virus stock production and titration. The generation and analysis of whole GPAdV genome sequences will provide additional data for a comprehensive description of the genetic organization of the viral genome and for a better assessment of genetic diversity between the two isolated strains.


1979 ◽  
Vol 150 (3) ◽  
pp. 703-708 ◽  
Author(s):  
Y Rikihisa ◽  
S Ito

Rickettsia tsutsugamushi (Gilliam strain) was serially propagated in BHK-21 cell cultures and incubated with guinea pig peritoneal polymorphonuclear leukocytes to study the ultrastructural features of rickettsial uptake and entry into the leukocytes. Significant numbers of rickettsiae were phagocytized selectively by these leukocytes within 30 min. About one-half of these rickettsiae remained sequestered in phagosomes but the other one-half were free from the phagosome and localized directly in the polymorphonuclear leukocyte cytoplasm. Various stages of rickettsial release from the phagosomes were observed. Once free within the polymorphonuclear leukocyte cytoplasm, the rickettsiae were preferentially localized in the glycogen-packed areas which are devoid of lysosomes and other cytoplasmic organelles. This study indicates that rickettsiae phagocytized by polymorphonuclear leukocytes can escape from the phagosome into the cytoplasm.


1967 ◽  
Vol 126 (3) ◽  
pp. 423-442 ◽  
Author(s):  
Robert I. Mishell ◽  
Richard W. Dutton

A culture system for cell suspensions from mouse spleens has been described. The system provides adequate conditions for in vitro immunization on initial exposure to heterologous erythrocytes. The in vitro response closely parallels that observed in vivo with respect to size, early kinetics, antigen dose, and the inhibitory effect of passive antibody. The response of cultured cells differs in two respects from that seen in vivo. There is an increase in the ability to discriminate between different varieties of homologous erythrocytes and the in vitro response does not appear to be limited by whatever mechanisms regulate the in vivo response.


Sign in / Sign up

Export Citation Format

Share Document