Enhancement of heat transfer of mixed convection for heated blocks using vortex shedding generated by an oblique plate in a horizontal channel

1999 ◽  
Vol 136 (1-2) ◽  
pp. 77-89 ◽  
Author(s):  
H. W. Wu ◽  
S. W. Perng
Author(s):  
Abdelouahab Bouttout

The study in question consists to amplify the hydrodynamic and thermal instabilities by imposed pulsation during forced convection of air cooling of nine identical heated blocks simulate electronic components mounted on horizontal channel. The finite volume method has been used to solve the governing equations of unsteady forced convection. This approach uses control volume for velocities that are staggered with respect to those for temperature and pressure. The numerical procedure called SIMPLER is used to handle the pressure-velocity coupling. The results show that the time averaged Nusselt number for each heated block depends on the pulsation frequencies and is always larger than in the steady-state case. The new feature in this work is that we obtained a short band of frequencies which the enhancement of heat transfer of all electronic components is greater than 20 % compared with steady non pulsation flow. In addition, the gain in heat transfer Emax attainted the maximum value for the central blocks. Our numerical results were compared with other investigations and found to agree well with experimental data.


Author(s):  
Mahmudul Islam ◽  
Shahriar Alam ◽  
Md. Shajedul Hoque Thakur ◽  
Mohammad Nasim Hasan ◽  
M. Ruhul Amin

Abstract A numerical study has been conducted on mixed convection heat transfer enhancement in a long horizontal channel provided with periodically distributed rotating blades. The upper wall of the channel is maintained at a constant low temperature (Tc) while the lower wall is kept hot at a constant high temperature (Th). A series of rotating blades having negligible thickness in comparison to its length is placed periodically along the centerline of the channel with the spacing between two successive blades’ rotational axes being equal to the height of the channel under consideration. The mathematical model of the present problem is governed by two-dimensional laminar transient continuity, momentum and energy equations. The governing equations are transformed to non-dimensional forms and then the moving mesh problem due to blade motion is solved by implementing Arbitrary Lagrangian-Eulerian (ALE) finite element formulation with triangular discretization scheme. Three different working fluids have been considered such as water, air and liquid Gallium that essentially cover a wide range of Prandtl Number (Pr) from 0.026 to 7.1. The dynamic condition of the rotating blades has been represented by Reynolds Number (Re) that is varied in the range of 1 to 500 and its effect on fluid flow and heat transfer has been investigated for the case of pure mixed convection heat transfer, characterized by Richardson number (Ri) of unity. Numerical results have been presented and analyzed in terms of the distribution of streamline and isotherm patterns, spatially averaged Nusselt number and normalized average Nusselt number variation along the hot wall for different parametric system configurations. The results of the present study show that, presence of rotating blades increases the heat transfer significantly in the channel. Heat transfer increases with increasing Prandtl Number (Pr) and the enhancement becomes more significant at higher Reynolds Numbers (Re).Power Spectrum analysis in frequency domain obtained from the FFT analysis indicates that, the rotating blade oscillation frequency and the oscillation frequency of Nusselt number differ at higher range of Reynolds Number (Re) and Prandtl Number (Pr). Therefore, dynamic condition of the rotating blades together with the thermophysical properties of working fluid play vital role in modulating the heat transfer characteristics and fluid flow behavior within the long horizontal channel.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Mustapha Ait Hssain ◽  
Rachid Mir ◽  
Youness El Hammami

The present work is devoted to the numerical study of steady and laminar mixed convection of nanofluid (water nanoparticles) in a horizontal channel provided with sources of heat at constant temperature, which simulate hot electronic components. The transport equations for continuity, momentum, and energy are solved with finite volume approach using the SIMPLE algorithm. The effective thermal conductivity and the dynamic viscosity of the nanofluid are calculated using, respectively, the Maxwell-Garnett and Brinkman model. The influence of the volume fraction of the nanoparticles 0%≤φ≤10%, Reynolds numbers 5≤Re≤75, the distance between the blocks 0≤d/H≤3, and the types of nanoparticles added (TiO2, Al2O3, CuO, Ag, Cu, and MgO) were investigated and discussed. It emerges from this simulation that the heat transfer increases with the increase in the volume fraction of the nanoparticles and the Reynolds number and decreases with the augmentation of separation distance between heated sources. Moreover, the study shows that the heat transfer is improved by 20% at a solid volume fraction of 10% of Cu nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document