Homotypic and heterotypic immunity of influenza A viruses induced by recombinants of the cold-adapted master strain A/Ann Arbor/6/60-ca

1987 ◽  
Vol 92 (1-2) ◽  
pp. 121-133 ◽  
Author(s):  
G. A. Tannock ◽  
Judith A. Paul
2009 ◽  
Vol 83 (21) ◽  
pp. 11166-11174 ◽  
Author(s):  
Ariel Rodriguez ◽  
Alicia Pérez-González ◽  
M. Jaber Hossain ◽  
Li-Mei Chen ◽  
Thierry Rolling ◽  
...  

ABSTRACT We have previously shown that infection with laboratory-passaged strains of influenza virus causes both specific degradation of the largest subunit of the RNA polymerase II complex (RNAP II) and inhibition of host cell transcription. When infection with natural human and avian isolates belonging to different antigenic subtypes was examined, we observed that all of these viruses efficiently induce the proteolytic process. To evaluate whether this process is a general feature of nonattenuated viruses, we studied the behavior of the influenza virus strains A/PR8/8/34 (PR8) and the cold-adapted A/Ann Arbor/6/60 (AA), which are currently used as the donor strains for vaccine seeds due to their attenuated phenotype. We have observed that upon infection with these strains, degradation of the RNAP II does not occur. Moreover, by runoff experiments we observe that PR8 has a reduced ability to inhibit cellular mRNA transcription. In addition, a hypervirulent PR8 (hvPR8) variant that multiplies much faster than standard PR8 (lvPR8) in infected cells and is more virulent in mice than the parental PR8 virus, efficiently induces RNAP II degradation. Studies with reassortant viruses containing defined genome segments of both hvPR8 and lvPR8 indicate that PA and PB2 subunits individually contribute to the ability of influenza virus to degrade the RNAP II. In addition, recently it has been reported that the inclusion of PA or PB2 from hvPR8 in lvPR8 recombinant viruses, highly increases their pathogenicity. Together, the data indicate that the capacity of the influenza virus to degrade RNAP II and inhibit the host cell transcription machinery is a feature of influenza A viruses that might contribute to their virulence.


1986 ◽  
Vol 91 (1-2) ◽  
pp. 53-60 ◽  
Author(s):  
A. W. Heath ◽  
H. F. Maassab ◽  
T. Odagiri ◽  
D. C. DeBorde ◽  
C. W. Potter

Viruses ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 928 ◽  
Author(s):  
Laura Rodriguez ◽  
Pilar Blanco-Lobo ◽  
Emma C. Reilly ◽  
Tatsuya Maehigashi ◽  
Aitor Nogales ◽  
...  

Influenza viruses cause annual, seasonal infection across the globe. Vaccination represents the most effective strategy to prevent such infections and/or to reduce viral disease. Two major types of influenza vaccines are approved for human use: inactivated influenza vaccines (IIVs) and live attenuated influenza vaccines (LAIVs). Two Master Donor Virus (MDV) backbones have been used to create LAIVs against influenza A virus (IAV): the United States (US) A/Ann Arbor/6/60 (AA) and the Russian A/Leningrad/134/17/57 (Len) H2N2 viruses. The mutations responsible for the temperature sensitive (ts), cold-adapted (ca) and attenuated (att) phenotypes of the two MDVs have been previously identified and genetically mapped. However, a direct comparison of the contribution of these residues to viral attenuation, immunogenicity and protection efficacy has not been conducted. Here, we compared the In vitro and in vivo phenotype of recombinant influenza A/Puerto Rico/8/34 H1N1 (PR8) viruses containing the ts, ca and att mutations of the US (PR8/AA) and the Russian (PR8/Len) MDVs. Our results show that PR8/Len is more attenuated in vivo than PR8/AA, although both viruses induced similar levels of humoral and cellular responses, and protection against homologous and heterologous viral challenges. Our findings support the feasibility of using a different virus backbone as MDV for the development of improved LAIVs for the prevention of IAV infections.


Sign in / Sign up

Export Citation Format

Share Document