viral disease
Recently Published Documents


TOTAL DOCUMENTS

1805
(FIVE YEARS 1120)

H-INDEX

65
(FIVE YEARS 17)

Author(s):  
Muhammad Riaz ◽  
◽  
Majid Khan ◽  
Rizwan Ahmad ◽  
Lina Hussain AlLehaibi ◽  
...  

Currently, the whole world is facing a life-threatening novel coronavirus 2019 (COVID-19) pandemic. Natural products are well-known for their potential role against viral disease, and some anti-viral agents have been developed to combat these diseases. Herein, the authors investigated the possible effects of this Holy plant Nigella sativaL. (NS), against coronavirus, using evidence-based and mechanistic approaches to conclude the immune-boosting and alleviation of respiratory systemeffects of NS. The pharmacological studies established a prominent role in treating various respiratory, immune systems, cardiovascular, skin, and gastrointestinal disorders. Literature supported the significant anti-viral role and showed an inhibitory role for NS against MHV-A59 CoV (mouse-hepatitis virus–A59) infected Hela, i.e., HeLaCEACAM1a (HeLa-epithelial carcinoembryonic antigen-related cell adhesion molecule 1a) cell. NS is a safe herbal product or dietary supplement and could be an effective and affordable community adjuvant treatment for coronavirus in the current scenario.


2023 ◽  
Vol 83 ◽  
Author(s):  
W. Khan ◽  
A.A. Khan ◽  
J. Khan ◽  
N. Khatoon ◽  
S. Arshad ◽  
...  

Abstract The COVID-19 is a contagious viral disease, was first emerged in Wuhan, China in December 2019 and became the whole world on alert. The mortality rate in top most countries in Asia with special reference to Pakistan has been focused. Since February 26 to September 2020 the total confirmed cases and mortality rate was measured through Wikipedia and the notable journals. Iran is the only country having highest number of deaths (5.73%) followed by Indonesia (3.77%) while Saudi Arabia shows the lowest number of deaths as 1.39%. In Pakistan the first case was confirmed in 26th February, 2020. The nCov-19 has closely related to severe acute respiratory syndrome (SARS) hence SARS COV-2 was named. This virus is responsible for more than 33.9 million deaths in over all the world as of 20th September, 2020. The number of new cases is increasing time to time. Sindh province of Pakistan has reported the highest number of cases till September, 20, 2020 as compared to other parts of the country and has the highest number of death followed by Khyber Pakhtunkhwa. Because of the person to person contact the disease is spreading rapidly. The individuals who has already infected with other diseases like cancer or diabetic etc. are vulnerable. The nCOV-19 is the most contagious due to its mode of transmission. There is still no vaccine is available for the treatment of disease caused by nCoV-2019. It is therefore the only option to control this pandemic is to adopt effective preventive measures.


2023 ◽  
Vol 83 ◽  
Author(s):  
A. C. S. D. Oliveira ◽  
C. C. Fernandes ◽  
L. S. Santos ◽  
A. C. B. B. Candido ◽  
L. G. Magalhães ◽  
...  

Abstract Numerous studies have investigated the chemical composition and biological activities of essential oils from different Citrus species fruit peel, leaves and flowers. This paper aims to investigate the chemical composition, larvicidal and antileishmanial activities of essential oil from Citrus reticulata fruit peel (CR-EO). CR-EO was obtained by hydrodistillation in a Clevenger-type apparatus and its chemical composition was analyzed by GC-MS and GC-FID. Limonene (85.7%), ɣ-terpinene (6.7%) and myrcene (2.1%) were identified as its major components. CR-EO showed high activity against promastigote forms of Leishmania amazonensis (IC50 = 8.23 µg/mL). CR-EO also exhibited high larvicidal activity against third instar Aedes aegypti larvae at a lethal concentration (LC50 = 58.35 µg/mL) and 100% mortality at 150 µg/mL. This study suggests, for the first time, the potential use of CR-EO against this important mosquito-borne viral disease caused by the genus Aedes.


2023 ◽  
Vol 74 (10) ◽  
pp. 6138-2023
Author(s):  
ANNA PIKUŁA ◽  
KRZYSZTOF ŚMIETANKA

Infectious bursal disease (IBD) is a highly infectious and contagious immunosuppressive viral disease of chickens with a worldwide economic significance to the poultry industry. Over fifty years have passed since the first confirmed occurrence of the disease, and the virus has spread all over world and evolved into multiple genetic, antigenic and pathotypic variants, becoming a serious threat to the poultry industry. The primary tool in IBD eradication is the maintenance of strict biosecurity in poultry farms and implementation of vaccination programmes which should take into account the current epidemiological knowledge about the IBDV strains circulating in the field. This review article presents the current state of knowledge about the infectious bursal disease virus (IBDV) with special regard to the molecular biology of the virus, immunological aspects, as well as current and future prevention strategies.


2022 ◽  
Vol 8 ◽  
Author(s):  
Kexin Zhong ◽  
Mengmeng Zhu ◽  
Qichao Yuan ◽  
Zhibang Deng ◽  
Simeng Feng ◽  
...  

African swine fever (ASF) is a highly detrimental viral disease caused by African swine fever virus (ASFV). The occurrence and prevalence of this disease have become a serious threat to the global swine industry and national economies. At present, the detection volume of African swine fever is huge, more sensitive and accurate detection techniques are needed for the market. pp62 protein, as a protein in the late stage of infection, has strong antigenicity and a high corresponding antibody titer in infected pigs. In this study, the CP530R gene was cloned into expression vector pET-28a to construct a prokaryotic expression plasmid, which was induced by IPTG to express soluble pp62 protein. Western blot analysis showed that it had great reactivity. Using the purified recombinant protein as an antigen, an indirect ELISA method for detecting ASFV antibody was established. The method was specific only to ASFV-positive serum, 1:1600 diluted positive serum could still be detected, and the coefficients of variation (CV) of the intra assay and inter assay were both <10%. It turns out that the assays had excellent specificity, sensitivity, and repeatability. This provides an accurate, rapid, and economical method for the detection of ASFV antibody in clinical pig serum samples.


2022 ◽  
Author(s):  
Mahavir Singh ◽  
Sathnur Pushpakumar ◽  
Nia Bard ◽  
Yuting Zheng ◽  
Rubens P. Homme ◽  
...  

Abstract The ongoing infectious viral disease pandemic (also known as the coronavirus disease-19; COVID-19) by a constantly emerging viral agent commonly referred as the severe acute respiratory syndrome corona virus 2 or SARS-CoV-2 has revealed unique pathological findings from infected human beings, and the postmortem observations. The list of disease symptoms, and post-mortem observations is too long to mention; however, a few notable ones are worth mentioning to put into a perspective in understanding the malignity of this pandemic starting with respiratory distress or dyspnea, chest congestion, muscle or body aches, malaise, fever, chills, etc. We opine that further improvement for delivering highly effective treatment, and preventive strategies would be benefited from validated animal disease models. In this context, we designed a study and show that a genetically engineered mouse expressing the human angiotensin converting enzyme 2; hACE2 (the receptor used by SARS-CoV-2 agent to enter host cells) represents an excellent investigative resource in simulating important clinical features of the COVID-19 infection. The hACE2 mouse model (which is susceptible to SARS-CoV-2) when administered with a recombinant SARS-CoV-2 spike (S) protein intranasally exhibited a profound cytokine storm capable of altering the physiological parameters including significant changes in in vivo cardiac function along with multi-organ damage that was further confirmed via histological findings. More importantly, visceral organs from SARS-CoV-2 spike (S) treated mice revealed thrombotic blood clots as seen during postmortem examination of the mice. Thus, the hACE2 engineered mouse appears to be a suitable model for studying intimate viral pathogenesis paving the way for further identification, and characterization of appropriate prophylactics as well as therapeutics for COVID-19 management.


EDIS ◽  
2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Amit Levy ◽  
Ozgur Batuman ◽  
Peggy Sieburth ◽  
Ajia Paolillo ◽  
Kuang-Ren Chung ◽  
...  

This document is one in a series designed to provide important information on the causal agent, symptoms, and transmission of exotic citrus diseases. This information can be used as an educational tool to raise awareness about these diseases and for scouting and identification efforts. Disseminating information about the diseases to the citrus industry may prevent their introduction and spread in Florida. This document will focus on the exotic viral disease caused by isolates of citrus tristeza virus–stem pitting (CTV-SP). Original version: Chung, Kuang-Ren, and Ronald Brlansky. 2006. “Citrus Diseases Exotic to Florida: Citrus Tristeza Virus– Stem Pitting (CTV-SP)”. EDIS 2006 (7). https://doi.org/10.32473/edis-pp149-2006.


Author(s):  
Nora Möhn ◽  
Lea Grote-Levi ◽  
Franziska Hopfner ◽  
Britta Eiz-Vesper ◽  
Britta Maecker-Kolhoff ◽  
...  

AbstractProgressive multifocal leukoencephalopathy (PML) is an opportunistic viral disease of the brain—caused by human polyomavirus 2. It affects patients whose immune system is compromised by a corresponding underlying disease or by drugs. Patients with an underlying lymphoproliferative disease have the worst prognosis with a mortality rate of up to 90%. Several therapeutic strategies have been proposed but failed to show any benefit so far. Therefore, the primary therapeutic strategy aims to reconstitute the impaired immune system to generate an effective endogenous antiviral response. Recently, anti-PD-1 antibodies and application of allogeneic virus-specific T cells demonstrated promising effects on the outcome in individual PML patients. This article aims to provide a detailed overview of the literature with a focus on these two treatment approaches.


2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Seyedeh Elham Rezatofighi ◽  
Khalil Mirzadeh ◽  
Fahimeh Mahmoodi

Abstract Background Bovine ephemeral fever (BEF) is an arthropod-borne viral disease caused by the BEF virus (BEFV). This single-stranded RNA virus that affects cattle and water buffalo is endemic in tropical and subtropical regions including Iran. While BEF is a major disease of cattle in Iran, information regarding its agent, molecular characterization, and circulating viruses are highly limited. The current study aimed to, firstly, determine the genetic and antigenic characteristics of BEFV strains in Khuzestan province in Southwest of Iran in 2018 and 2020 and, secondly, to compare them with strains obtained from other areas. Results By phylogenetic analysis based on the Glycoprotein gene, BEFV strains were divided into four clusters of Middle East, East Asia, South Africa, and Australia; in which the 2018 and 2020 Iranian BEFV strains were grouped in the Middle East cluster with the Turkish, Indian, and Israeli strains. Depending on the chronology and geographical area, the outbreaks of Turkey (2020), Iran (2018 and 2020), and India (2018 and 2019) are proposed to be related. These BEFVs had the highest identity matrix and the lowest evolutionary distance among the studied strains. Multiple sequence alignment of G1, G2, and G3 antigenic sites showed that these neutralizing epitopes are highly conserved among the strains of the Middle East cluster; however, the strains previously identified in Iran differed in three amino acids placed in G1 and G2 epitopes. Conclusion The findings revealed that BEFVs circulating in the Middle East are closely related phylogenetically and geographically. They also have similar antigenic structures; therefore, developing a vaccine based on these strains can be effective for controlling BEF in the Middle East.


Sign in / Sign up

Export Citation Format

Share Document