scholarly journals Comparison of X-ray and gamma-ray dose-response curves for pink somatic mutations in Tradescantia clone 02

1976 ◽  
Vol 13 (4) ◽  
pp. 295-303 ◽  
Author(s):  
A. G. Underbrink ◽  
A. M. Kellerer ◽  
R. E. Mills ◽  
A. H. Sparrow
1999 ◽  
Vol 75 (12) ◽  
pp. 1557-1566 ◽  
Author(s):  
J.F. Barquinero ◽  
S. Cigarran ◽  
M. R. Caballin ◽  
H. Braselmann ◽  
M. Ribas ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 968
Author(s):  
Jin-Hong Kim ◽  
Kwon Hwangbo ◽  
Eujin Lee ◽  
Shubham Kumar Dubey ◽  
Moon-Soo Chung ◽  
...  

Transcriptome-based dose–response curves were recently applied to the phytodosimetry of gamma radiation in a dicot plant, Arabidopsis thaliana, as an alternative biological assessment of genotoxicity using DNA damage response (DDR) genes. In the present study, we characterized gamma ray-responsive marker genes for transcriptome-based phytodosimetry in a monocot plant, rice (Oryza sativa L.), and compared different phytodosimetry models between rice and Arabidopsis using gamma-H2AX, comet, and quantitative transcriptomic assays. The transcriptome-based dose–response curves of four marker genes (OsGRG, OsMutS, OsRAD51, and OsRPA1) were reliably fitted to quadratic or exponential decay equations (r2 > 0.99). However, the single or integrated dose–response curves of these genes were distinctive from the conventional models obtained by the gamma-H2AX or comet assays. In comparison, rice displayed a higher dose-dependency in the comet signal and OsRAD51 transcription, while the gamma-H2AX induction was more dose-dependent in Arabidopsis. The dose-dependent transcriptions of the selected gamma-ray-inducible marker genes, including OsGRG, OsMutS, OsRAD51, and OsRPA1 in rice and AtGRG, AtPARP1, AtRAD51, and AtRPA1E in Arabidopsis, were maintained similarly at different vegetative stages. These results suggested that the transcriptome-based phytodosimetry model should be further corrected with conventional genotoxicity- or DDR-based models despite the high reliability or dose-dependency of the model. In addition, the relative weighting of each gene in the integrated transcriptome-based dose–response model using multiple genes needs to be considered based on the trend and amplitude of the transcriptional change.


1974 ◽  
Vol 32 (02/03) ◽  
pp. 356-365 ◽  
Author(s):  
F Haverkate ◽  
D. W Traas

SummaryIn the fibrin plate assay different types of relationships between the dose of applied proteolytic enzyme and the response have been previously reported. This study was undertaken to determine whether a generally valid relationship might exist.Trypsin, chymotrypsin, papain, the plasminogen activator urokinase and all of the microbial proteases investigated, including brinase gave a linear relationship between the logarithm of the enzyme concentration and the diameter of the circular lysed zone. A similar linearity of dose-response curves has frequently been found by investigators who used enzyme plate assays with substrates different from fibrin incorporated in an agar gel. Consequently, it seems that this linearity of dose-response curves is generally valid for the fibrin plate assay as well as for other enzyme plate bioassays.Both human plasmin and porcine tissue activator of plasminogen showed deviations from linearity of semi-logarithmic dose-response curves in the fibrin plate assay.


1962 ◽  
Vol 41 (1) ◽  
pp. 143-153 ◽  
Author(s):  
U. Henriques

ABSTRACT A bioassay of thyroid hormone has been developed using Xenopus larvae made hypothyroid by the administration of thiourea. Only tadpoles of uniform developmental rate were used. Thiourea was given just before the metamorphotic climax in concentrations that produced neoteni in an early metamorphotic stage. During maintained thiourea neotoni, 1-thyroxine and 1-triiodothyronine were added as sodium salts to the water for three days and at the end of one week the stage of metamorphosis produced was determined. In this way identical dose-response curves were obtained for the two compounds. No qualitative differences between their effects were noted except that triiodothyronine seemed more toxic than thyroxine in equivalent doses. Triiodothyronine was found to be 7–12 times as active as thyroxine.


Sign in / Sign up

Export Citation Format

Share Document