developmental rate
Recently Published Documents





2022 ◽  
Zhou Jin-Cheng ◽  
Shang Dan ◽  
Liu Shi-Meng ◽  
Qian Qian ◽  
Liang Hong-Yu ◽  

Abstract Parasitoids may deposit a second clutch of eggs on a host that has been parasitized by the same parasitoid species. This is termed “superparasitism”. Wolbachia infection increases the superparasitism frequency of Trichogramma females. We investigated the outcome and fitness cost of inter-strain intrinsic competition between Wolbachia-infected thelytokous strain (TDW) and uninfected bisexual strain (TDB) of Trichogramma dendrolimi. To determine the developmental rate of both strains, the size of immature stages of T. dendrolimi offspring at different times after parasitization was measured in single parasitism and superparasitism conditions. The results showed increased superparasitism by Wolbachia-infected females compared to uninfected females, regardless of the time interval between oviposition; Trichogramma females were unable to distinguish between host eggs previously parasitized by TDB or TDW females. When the first oviposition was performed by TDB females, the TDB offspring outcompeted TDW offspring deposited later. However, although the TDW offspring was deposited 8 h earlier than the TDB offspring, it gained no advantage over TDB offspring. Regardless of parasitism conditions, the differences in development rate and time between TDW and TDB offspring were not significant. This study revealed that albeit TDW females presented a higher tendency of superparasitism than TDB females, TDB offspring outcompeted TDW offspring even when the latter was deposited 8 h earlier. The negative effects of Wolbachia infection on the competitive ability of TDW offspring inside the host eggs were due to offspring’s low fitness rather than delayed development.

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 155
Florian Jabbour ◽  
Felipe Espinosa ◽  
Quentin Dejonghe ◽  
Timothée Le Péchon

The development of unisexual flowers has been described in a large number of taxa, sampling the diversity of floral phenotypes and sexual systems observed in extant angiosperms, in studies focusing on floral ontogeny, on the evo-devo of unisexuality, or on the genetic and chromosomal bases of unisexuality. We review here such developmental studies, aiming at characterizing the diversity of ontogenic pathways leading to functionally unisexual flowers. In addition, we present for the first time and in a two-dimensional morphospace a quantitative description of the developmental rate of the sexual organs in functionally unisexual flowers, in a non-exhaustive sampling of angiosperms with contrasted floral morphologies. Eventually, recommendations are provided to help plant evo-devo researchers and botanists addressing macroevolutionary and ecological issues to more precisely select the taxa, the biological material, or the developmental stages to be investigated.

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260645
Yasuyuki Kikuchi ◽  
Sayaka Wakayama ◽  
Daiyu Ito ◽  
Masatoshi Ooga ◽  
Teruhiko Wakayama

Conventional in vitro culture and manipulation of mouse embryos require a CO2 incubator, which not only increases the cost of performing experiments but also hampers the transport of embryos to the other laboratories. In this study, we established and tested a new CO2 incubator-free embryo culture system and transported embryos using this system. Using an Anaero pouch, which is a CO2 gas-generating agent, to increase the CO2 partial pressure of CZB medium to 4%–5%, 2-cell embryos were cultured to the blastocyst stage in a sealed tube without a CO2 incubator at 37°C. Further, the developmental rate to blastocyst and full-term development after embryo transfer were comparable with those of usual culture method using a CO2 incubator (blastocyst rate: 97% versus 95%, respectively; offspring rate: 30% versus 35%, respectively). Furthermore, using a thermal bottle, embryos were reliably cultured using this system for up to 2 days at room temperature, and live offspring were obtained from embryos transported in this simple and very low-cost manner without reducing the offspring rate (thermal bottle: 26.2% versus CO2 incubator: 34.3%). This study demonstrates that CO2 incubators are not essential for embryo culture and transportation and that this system provides a useful, low-cost alternative for mouse embryo culture and manipulation.

Laila A Al-Shuraym ◽  
Fahd A Al-Mekhlafi ◽  
Fahd Mohammed Abd Al Galil ◽  
Sadeq K Alhag ◽  
Lamya Ahmed Al-Keridis ◽  

2021 ◽  
Vol 14 (1) ◽  
Wanting Yang ◽  
Peijun Wang ◽  
Pengbo Cao ◽  
Shuang Wang ◽  
Yuxiao Yang ◽  

Abstract Background Dynamic changes of histone posttranslational modifications are important contexts of epigenetic reprograming after fertilization in pre-implantation embryos. Recently, lactylation has been reported as a novel epigenetic modification that regulates various cellular processes, but its role during early embryogenesis has not been elucidated. Results We examined nuclear accumulation of H3K23la, H3K18la and pan histone lactylation in mouse oocytes and pre-implantation embryos by immunofluorescence with specific antibodies. All of the three modifications were abundant in GV stage oocytes, and both H3K23la and pan histone lactylation could be detected on the condensed chromosomes of the MII oocytes, while H3K18la were not detected. After fertilization, the nuclear staining of H3K23la, H3K18la and pan histone lactylation was faint in zygotes but homogeneously stained both of the parental pronuclei. The signal remained weak in the early cleavage stage embryos and increased remarkably in the blastocyst stage embryos. Comparison of the embryos cultured in four different conditions with varying concentrations of oxygen found that H3K23la, H3K18la and pan histone lactylation showed similar and comparable staining pattern in embryos cultured in atmospheric oxygen concentration (20% O2), gradient oxygen concentration (5% O2 to 2% O2) and embryos obtained from in vivo, but the modifications were greatly reduced in embryos cultured in hypoxic condition (2% O2). In contrast, nuclear accumulation of H3K18ac or H3K23ac was not significantly affected under hypoxic condition. Moreover, the developmental rate of in vitro cultured embryo was significantly reduced by low oxygen concentration and small molecule inhibition of LDHA activity led to decreased lactate production, as well as reduced histone lactylation and compromised developmental rate. Conclusions We provided for the first time the dynamic landscape of H3K23la, H3K18la and pan histone lactylation in oocytes and pre-implantation embryos in mice. Our data suggested that histone lactylation is subjected to oxygen concentration in the culture environment and hypoxic in vitro culture reduces histone lactylation, which in turn compromises developmental potential of pre-implantation embryos in mice.

2021 ◽  
Yanna Dang ◽  
Lei Luo ◽  
Yan Shi ◽  
Shuang Li ◽  
Shaohua Wang ◽  

Reprogramming of histone modifications is critical to safeguard correct gene expression profile during preimplantation development. Of interest, trimethylation of lysine 4 on histone 3 (H3K4me3) exhibits a unique and dynamic landscape with a potential species-specific feature. Here, we address how it is reprogrammed and its functional significance during oocyte maturation and early embryonic development in cows. Notably, the overall signal of H3K4me3 decreased sharply during embryonic genome activation (EGA). By using low input ChIP-seq technology, we find widespread broad H3K4me3 domains in oocytes and early cleaved embryos. The broad domains are gradually removed after fertilization, which is obviously seen during EGA. Meanwhile, H3K4me3 become enriched at promoter regions. Interestingly, the gene expression level displays a positive correlation with the relative H3K4me3 signal of their promoters when embryos reach 16-cell stage. Importantly, disruption of H3K4me3 demethylases KDM5A-5C increases H3K4me3 level, decreases the embryonic developmental rate and results in dysregulation of over a thousand genes. Meanwhile, KDM5 deficiency causes a re-destribution of H3K4me3 across genome. In particular, the positive correlation between promoter H3K4me3 enrichment and gene expression level disappear. Overall, we describe the genomic reprogramming of H3K4me3 in a greater resolution during bovine preimplantation development and propose that KDM5-mediated re-distribution of H3K4me3 plays an important role in modulating oocyte-to-embryonic transition.

NeoBiota ◽  
2021 ◽  
Vol 69 ◽  
pp. 103-132
Max Mühlenhaupt ◽  
James Baxter-Gilbert ◽  
Buyisile G. Makhubo ◽  
Julia L. Riley ◽  
John Measey

Cities are focal points of introduction for invasive species. Urban evolution might facilitate the success of invasive species in recipient urban habitats. Here we test this hypothesis by rearing tadpoles of a successful amphibian urban coloniser and invader in a common garden environment. We compared growth rate, morphological traits, swimming performance, and developmental rate of guttural toad tadpoles (Sclerophrys gutturalis) from native rural, native urban, and non-native urban habitats. By measuring these traits across ontogeny, we were also able to compare divergence across different origins as the tadpoles develop. The tadpoles of non-native urban origin showed significantly slower developmental rate (e.g., the proportion of tadpoles reaching Gosner stage 31 or higher was lower at age 40 days) than tadpoles of native urban origin. Yet, tadpoles did not differ in growth rate or any morphological or performance trait examined, and none of these traits showed divergent ontogenetic changes between tadpoles of different origin. These findings suggest that prior adaptation to urban habitats in larval traits likely does not play an important role in facilitating the invasion success of guttural toads into other urban habitats. Instead, we suggest that evolutionary changes in larval traits after colonization (e.g., developmental rate), together with decoupling of other traits and phenotypic plasticity might explain how this species succeeded in colonising extra-limital urban habitats.

2021 ◽  
Vol 12 ◽  
Hong-Wei Shan ◽  
Shu-Sheng Liu

Insects commonly harbor maternally inherited intracellular symbionts in nature, and the microbial partners often exert influence on host reproduction and fitness to promote their prevalence. Here, we investigated composition of symbionts and their biological effects in the invasive Bemisia tabaci MED species of a whitefly complex. Our field surveys revealed that populations of the MED whitefly, in addition to the primary symbiont Portiera, mainly contain two secondary symbionts Hamiltonella, which is nearly fixed in the host populations, and Cardinium with infection frequencies ranging from 0 to 86%. We isolated and established Cardinium-positive and Cardinium-free whitefly lines with a similar nuclear genetic background from a field population, and compared performance of the two whitefly lines. The infection of Cardinium incurred significant fitness costs on the MED whitefly, including reduction of fecundity and egg viability as well as delay in development. We then selectively removed Hamiltonella from the Cardinium-free whitefly line and compared performance of two whitefly lines, one harboring both Portiera and Hamiltonella and the other harboring only Portiera. While depletion of Hamiltonella had little or only marginal effects on the fecundity, developmental rate, and offspring survival, the Hamiltonella-free whitefly line produced very few female offspring, often reducing the progeny female ratio from about 50% to less than 1%. Our findings indicate that the varying costs and benefits of the association between these two symbionts and the MED whitefly may play an important role in shaping their differential prevalence in the field.

Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 833
Juan Zhang ◽  
Yayuan Tang ◽  
Jun Huang

The effects of high temperature on the developmental, morphological, and fecundity characteristics of insects, including biological invaders and their accompanying natural enemies, are clear. Phenacoccus solenopsis (Homoptera: Pseudococcidae) is an aggressive invasive insect pest worldwide. Aenasius bambawalei (=Aenasius arizonensis Girault) (Hymenoptera: Encyrtidae) is a predominant accompanying parasitoid of this mealybug. Our previous studies showed that temperature change induced an increase in the female offspring ratio of A. bambawalei. However, whether this increase is the result of a shortened or enhanced development period of the reproductive systems of A. bambawalei remains unknown. Here, we compared the pupal development, hind tibia of female adults, and fecundity of A. bambawalei under different temperatures to clarify the development and morphological changes induced by high temperature and to better understand its potential as an accompanying natural enemy. Our results showed that, at a high temperature (36 °C), the pupal developmental duration of A. bambawalei was only 0.80 times that of the control, and the length of the hind tibia was 1.16 times that of the control. Moreover, high temperature accelerated the developmental rate of gonads and increased the numbers of eggs and sperm. These results indicated that experimental warming shortened the pupal developmental duration, altered the hind tibia length of female adults, and facilitated the fecundity of A. bambawalei. These findings will help to understand the adaptation mechanisms of accompanying natural enemies. Furthermore, these findings will help to make use of this behavior to effectively control invasive pests.

Sign in / Sign up

Export Citation Format

Share Document