Redox potential trends in a submerged rice soil

1965 ◽  
Vol 23 (1) ◽  
pp. 129-136 ◽  
Author(s):  
F. S. C. P. Kalpag�
2001 ◽  
Vol 47 (1) ◽  
pp. 123-130 ◽  
Author(s):  
Takuhito Nozoe ◽  
Tetsuo Sekiguchi ◽  
Tsunehisa Inoue

2001 ◽  
Vol 120 (5) ◽  
pp. A195-A195
Author(s):  
J PAULA ◽  
E SPINEDI ◽  
A DUBIN ◽  
D BUSTOS ◽  
J DAVOLOS

2013 ◽  
Vol 487 ◽  
pp. 7-13 ◽  
Author(s):  
TG Gerwing ◽  
AMA Gerwing ◽  
D Drolet ◽  
DJ Hamilton ◽  
MA Barbeau

2020 ◽  
Author(s):  
Vishwanath R.S ◽  
Masa-aki Haga ◽  
Takumi Watanabe ◽  
Emilia Witkowska Nery ◽  
Martin Jönsson-Niedziolka

Here we describe the synthesis and electrochemical testing of a heteroleptic bis(tridentate) ruthenium(II) complex [Ru<sup>II</sup>(LR)(L)]<sup>0</sup> (LR =2,6-bis(1-(2-octyldodecan)benzimidazol-2-yl)pyridine, L = 2,6-bis(benzimidazolate)pyridine). It is a neutral complex which undergoes a quasireversible oxidation and reduction at relatively low potential. The newly synthetized compound was used for studies of ion-transfer at the three-phase junction because of the sensitivity of this method to cation expulsion. The [Ru<sup>II</sup>(LR)(L)]<sup>0</sup> shows exceptional stability during cycling and is sufficiently lipophilic even after oxidation to persist in the organic phase also using very hydrophilic anions such as Cl<sup>−</sup>. Given its low redox potential and strong lipophilicity this compound will be of interest as an electron donor in liquid-liquid electrochemistry.


Sign in / Sign up

Export Citation Format

Share Document