Effects of elevated carbon dioxide concentration on biological nitrogen fixation, nitrogen mineralization and carbon decomposition in submerged rice soil

2001 ◽  
Vol 34 (1) ◽  
pp. 7-13 ◽  
Author(s):  
Weiguo Cheng ◽  
Kazuyuki Inubushi ◽  
Kazuyuki Yagi ◽  
Hidemitsu Sakai ◽  
Kazuhiko Kobayashi
2020 ◽  
Author(s):  
Sami Ullah ◽  
Ernesto Saiz Val ◽  
Fotis Sgouridis ◽  
Falko Drijfhout

<p>Elevated atmospheric carbon dioxide concentrations are stimulating photosynthesis and carbon sequestration. However, the extent of photosynthetic stimulation in forests under future climates is highly uncertain given that nutrient limitation in soils may constrain the CO<sub>2</sub> fertilization effect. The Birmingham Institute of Forest Research (BIFoR), University of Birmingham established the only global mature temperate deciduous forests Free Air Carbon Dioxide Enrichment (FACE) experiment to study the response of forests to future climates. Fumigation of the forest with ~550 ppm CO<sub>2</sub> started in 2017 and will continue until at least 2026. Soil nutrients cycling including nitrogen transformation in response to elevated atmospheric CO<sub>2</sub> (eCO<sub>2</sub>) fumigation is currently investigated to determine the role of nutrient availability in carbon capture by forests. In this paper, we show preliminary results of the response of asymbiotic biological nitrogen fixation (BNF) in soils and epiphytic bryophytes at BIFoR-FACE following a year of eCO<sub>2</sub> fumigation. It is hypothesized that the demand for available nitrogen by trees will increase under eCO<sub>2</sub> and that competition of roots and soil microbes for available nitrogen will enhance asymbiotic BNF to at least meet microbial metabolic nitrogen demands in the long run. Surface soils (0-5 cm) and epiphytic feather moss (Hypnum cupressiforme) growing on oak tree stems in the FACE site were  collected during the second year of eCO<sub>2</sub> fumigation for the quantification of BNF activity using the <sup>15</sup>N<sub>2</sub> assimilation methods (Saiz et al. 2019). Samples were incubated in 50 mL serum bottles under in situ conditions, followed by the analysis of soil and tissue samples for <sup>15</sup>N signature on an Isotope Ratio Mass Spectrometer for the quantification of BNF activity.</p><p>The BNF activity under eCO<sub>2</sub> were 369% higher than in soils under ambient atmospheric CO<sub>2</sub>. BNF rates associated with feather mosses (Hypnum cupressiforme) did not differ between the eCO<sub>2</sub> and control plots; however, rates under eCO<sub>2</sub> on average were 60% lower than in the control plots. Unlike soils, the moisture of feather mosses correlated significantly (R<sup>2</sup> = 51%) with BNF activity. Among nutrients in soil with implications for BNF activity, the concentrations of Mg, K, Co and Ni were significantly lower in soils under eCO<sub>2</sub> than in the control plots, while in feather moss tissues no differences were observed.  Our preliminary results show that eCO<sub>2</sub> fumigation primed asymbiotic BNF activity in soils. An enhancement of BNF together with the observation of a relatively low nutrient content under eCO<sub>2</sub> points to important changes in nitrogen cycling processes in the early years of CO<sub>2</sub> fumigation. Further detailed studies are underway to fully disentangle controls on nitrogen availability to trees under future climates.</p><p><strong> </strong></p><p><strong>Reference</strong></p><p>Saiz, E, Sgouridis, F, Drifjhout, F & Ullah, S. 2019. Biological nitrogen fixation in peatlands: comparison between acetylene reduction assay and <sup>15</sup>N<sub>2</sub> assimilation methods. Soil Biol. Biochem:131:157-165</p>


2003 ◽  
Vol 23 (15) ◽  
pp. 1051-1059 ◽  
Author(s):  
V. M. Temperton ◽  
S. J. Grayston ◽  
G. Jackson ◽  
C. V. M. Barton ◽  
P. Millard ◽  
...  

2009 ◽  
Vol 151 (3) ◽  
pp. 1009-1016 ◽  
Author(s):  
Alistair Rogers ◽  
Elizabeth A. Ainsworth ◽  
Andrew D.B. Leakey

2020 ◽  
Author(s):  
Taraka Davies-Barnard ◽  
Johannes Meyerholt ◽  
Sönke Zaehle ◽  
Pierre Friedlingstein ◽  
Victor Brovkin ◽  
...  

<p>Biological nitrogen fixation (BNF) is a key contributor to sustaining the terrestrial carbon cycle, providing nitrogen input that plants require. This is particularly salient for projections of carbon uptake under increased atmospheric carbon dioxide concentrations, which may allow for so-called ‘carbon dioxide fertilisation’ if other plant requirements, such as nitrogen, do not prevent increases in productivity. The amount, processes, and global distribution of BNF is highly disputed and consequently land surface models represent it in varying ways. Looking at the latest generation of CMIP6 earth system models with terrestrial nitrogen cycles, we consider their performance with regard to BNF. We assess models against a new comprehensive meta-analysis of BNF field measurements that gives a global range and site-specific values. We find that compared to the wide range of upscaled observations, the models still have a larger range, with under and overestimates.</p>


1984 ◽  
Vol 13 (1) ◽  
pp. 24-28
Author(s):  
J. R. Sims ◽  
W. C. Lindemann ◽  
R. S. Smith ◽  
S. H. West ◽  
L. R. Frederick

Sign in / Sign up

Export Citation Format

Share Document