Synthesis of the inner cell wall layer of the chlamydomonad flagellate,Gloeomonas kupfferi

PROTOPLASMA ◽  
1993 ◽  
Vol 176 (1-2) ◽  
pp. 1-13 ◽  
Author(s):  
D. S. Domozych ◽  
M. Dairman
Keyword(s):  



2018 ◽  
pp. 247-269
Author(s):  
Dominique Derome ◽  
Karol Kulasinski ◽  
Chi Zhang ◽  
Mingyang Chen ◽  
Jan Carmeliet


2003 ◽  
Vol 69 (3) ◽  
pp. 1581-1588 ◽  
Author(s):  
Sophie Paris ◽  
Jean-Paul Debeaupuis ◽  
Reto Crameri ◽  
Marilyn Carey ◽  
Franck Charlès ◽  
...  

ABSTRACT The surface of Aspergillus fumigatus conidia, the first structure recognized by the host immune system, is covered by rodlets. We report that this outer cell wall layer contains two hydrophobins, RodAp and RodBp, which are found as highly insoluble complexes. The RODA gene was previously characterized, and ΔrodA conidia do not display a rodlet layer (N. Thau, M. Monod, B. Crestani, C. Rolland, G. Tronchin, J. P. Latgé, and S. Paris, Infect. Immun. 62:4380-4388, 1994). The RODB gene was cloned and disrupted. RodBp was highly homologous to RodAp and different from DewAp of A. nidulans. ΔrodB conidia had a rodlet layer similar to that of the wild-type conidia. Therefore, unlike RodAp, RodBp is not required for rodlet formation. The surface of ΔrodA conidia is granular; in contrast, an amorphous layer is present at the surface of the conidia of the ΔrodA ΔrodB double mutant. These data show that RodBp plays a role in the structure of the conidial cell wall. Moreover, rodletless mutants are more sensitive to killing by alveolar macrophages, suggesting that RodAp or the rodlet structure is involved in the resistance to host cells.





1985 ◽  
Vol 142 (3) ◽  
pp. 242-247 ◽  
Author(s):  
Mercedes R. Edwards ◽  
Katherine E. Fritz
Keyword(s):  


1986 ◽  
Vol 64 (10) ◽  
pp. 2201-2206 ◽  
Author(s):  
Anne Mie C. Emons

Based on cell wall texture of root hairs, two groups can be distinguished within the 10 species of Equisetum listed in Flora Europaea. This distinction coincides with the division of the genus Equisetum into two subgenera: Equisetum (horsetails) and Hippochaete (scouring rushes). All species of the subgenus Equisetum have a helicoidal cell wall texture in young growing root hairs as well as in full-grown hairs. All species of the subgenus Hippochaete deposit an additional inner cell wall layer against this helicoidal layer when elongation has stopped. The microfibrils in this additional layer do not form a helicoidal texture, but are helically arranged, forming a Z-helix. The presence of a helical layer in full-grown hairs is not a prerequisite for growth in soil, but an exclusively helicoidal root hair wall texture might be favourable for life in water. The wall texture is not influenced by the consistency of the substratum.





PROTOPLASMA ◽  
1986 ◽  
Vol 133 (1) ◽  
pp. 29-33 ◽  
Author(s):  
W. F. Millington ◽  
J. M. Labavitch
Keyword(s):  


Holzforschung ◽  
2015 ◽  
Vol 69 (4) ◽  
pp. 441-448 ◽  
Author(s):  
Samuel L. Zelinka ◽  
Sophie-Charlotte Gleber ◽  
Stefan Vogt ◽  
Gabriela M. Rodríguez López ◽  
Joseph E. Jakes

Abstract Diffusion of chemicals and ions through the wood cell wall plays an important role in wood damage mechanisms. In the present work, free diffusion of ions through wood secondary walls and middle lamellae has been investigated as a function of moisture content (MC) and anatomical direction. Various ions (K, Cl, Zn, Cu) were injected into selected regions of 2 μm thick wood sections with a microinjector and then the ion distribution was mapped by means of X-ray fluorescence microscopy with submicron spatial resolution. The MC of the wood was controlled in situ by means of climatic chamber with controlled relative humidity (RH). For all ions investigated, there was a threshold RH below which the concentration profiles did not change. The threshold RH depended upon ionic species, cell wall layer, and wood anatomical orientation. Above the threshold RH, differences in mobility among ions were observed and the mobility depended upon anatomical direction and cell wall layer. These observations support a recently proposed percolation model of electrical conduction in wood. The results contribute to understanding the mechanisms of fungal decay and fastener corrosion that occur below the fiber saturation point.



Sign in / Sign up

Export Citation Format

Share Document