Harmonic maps of bounded symmetric domains

1995 ◽  
Vol 303 (1) ◽  
pp. 417-433 ◽  
Author(s):  
Y. L. Xin









2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Yuan-Jen Chiang
Keyword(s):  


2021 ◽  
Vol 93 (3) ◽  
Author(s):  
Harald Upmeier

AbstractWe determine the eigenvalues of certain “fundamental” K-invariant Toeplitz type operators on weighted Bergman spaces over bounded symmetric domains $$D=G/K,$$ D = G / K , for the irreducible K-types indexed by all partitions of length $$r={\mathrm {rank}}(D)$$ r = rank ( D ) .



2020 ◽  
Vol 7 (1) ◽  
pp. 129-140
Author(s):  
Robert Ream

AbstractIn this paper we study an analog of minimal surfaces called Weyl-minimal surfaces in conformal manifolds with a Weyl connection (M4, c, D). We show that there is an Eells-Salamon type correspondence between nonvertical 𝒥-holomorphic curves in the weightless twistor space and branched Weyl-minimal surfaces. When (M, c, J) is conformally almost-Hermitian, there is a canonical Weyl connection. We show that for the canonical Weyl connection, branched Weyl-minimal surfaces satisfy the adjunction inequality\chi \left( {{T_f}\sum } \right) + \chi \left( {{N_f}\sum } \right) \le \pm {c_1}\left( {f*{T^{\left( {1,0} \right)}}M} \right).The ±J-holomorphic curves are automatically Weyl-minimal and satisfy the corresponding equality. These results generalize results of Eells-Salamon and Webster for minimal surfaces in Kähler 4-manifolds as well as their extension to almost-Kähler 4-manifolds by Chen-Tian, Ville, and Ma.





Sign in / Sign up

Export Citation Format

Share Document