Heavy quark 1/m Q expansion of meson weak decay form factors in the relativistic quark model

1995 ◽  
Vol 66 (1-2) ◽  
pp. 119-127 ◽  
Author(s):  
R. N. Faustov ◽  
V. O. Galkin

2001 ◽  
Vol 16 (supp01a) ◽  
pp. 416-418
Author(s):  
Cheng-Wei Chiang

We provide upper and lower bounds on the semileptonic weak decay form factors for B → D(*) and Λb → Λc decays by utilizing inclusive heavy quark effective theory sum rules. These bounds are calculated to second order in ΛQCD/mQ and first order in αs. The [Formula: see text] corrections to the bounds at zero recoil are also presented.





1969 ◽  
Vol 11 (1) ◽  
pp. 61-68 ◽  
Author(s):  
M. Böhm ◽  
D. Rein




1973 ◽  
Vol 8 (1) ◽  
pp. 11-15 ◽  
Author(s):  
V. F. Dushenko ◽  
A. P. Kobushkin ◽  
Yu. M. Sinjukov


2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Yu-Kuo Hsiao ◽  
Ling Yang ◽  
Chong-Chung Lih ◽  
Shang-Yuu Tsai

AbstractMore than ten $$\Omega _c^0$$ Ω c 0 weak decay modes have been measured with the branching fractions relative to that of $$\Omega ^0_c\rightarrow \Omega ^-\pi ^+$$ Ω c 0 → Ω - π + . In order to extract the absolute branching fractions, the study of $$\Omega ^0_c\rightarrow \Omega ^-\pi ^+$$ Ω c 0 → Ω - π + is needed. In this work, we predict $${{\mathcal {B}}}_\pi \equiv {{\mathcal {B}}}(\Omega _c^0\rightarrow \Omega ^-\pi ^+)=(5.1\pm 0.7)\times 10^{-3}$$ B π ≡ B ( Ω c 0 → Ω - π + ) = ( 5.1 ± 0.7 ) × 10 - 3 with the $$\Omega _c^0\rightarrow \Omega ^-$$ Ω c 0 → Ω - transition form factors calculated in the light-front quark model. We also predict $${{\mathcal {B}}}_\rho \equiv {{\mathcal {B}}}(\Omega _c^0\rightarrow \Omega ^-\rho ^+)=(14.4\pm 0.4)\times 10^{-3}$$ B ρ ≡ B ( Ω c 0 → Ω - ρ + ) = ( 14.4 ± 0.4 ) × 10 - 3 and $${{\mathcal {B}}}_e\equiv {{\mathcal {B}}}(\Omega _c^0\rightarrow \Omega ^-e^+\nu _e)=(5.4\pm 0.2)\times 10^{-3}$$ B e ≡ B ( Ω c 0 → Ω - e + ν e ) = ( 5.4 ± 0.2 ) × 10 - 3 . The previous values for $${{\mathcal {B}}}_\rho /{{\mathcal {B}}}_\pi $$ B ρ / B π have been found to deviate from the most recent observation. Nonetheless, our $${{\mathcal {B}}}_\rho /{{\mathcal {B}}}_\pi =2.8\pm 0.4$$ B ρ / B π = 2.8 ± 0.4 is able to alleviate the deviation. Moreover, we obtain $${{\mathcal {B}}}_e/{{\mathcal {B}}}_\pi =1.1\pm 0.2$$ B e / B π = 1.1 ± 0.2 , which is consistent with the current data.





1998 ◽  
Vol 24 (4) ◽  
pp. 201-212 ◽  
Author(s):  
M. A. Ivanov ◽  
T. Mizutani ◽  
Yu. M. Valit




Sign in / Sign up

Export Citation Format

Share Document