Encoding mechanical design features for recognition via neural nets

1992 ◽  
Vol 4 (2) ◽  
pp. 67-74 ◽  
Author(s):  
Thomas J. Peters
Author(s):  
R. J. Antos ◽  
W. C. Emmerling

One common method of reducing the NOx emissions from industrial gas turbines is to inject water into the combustion process. The amount of water injected depends on the emissions rules that apply to a particular unit. Westinghouse W501B industrial gas turbines have been operated at water injection levels required to meet EPA NOx emissions regulations. They also have been operated at higher injection levels required to meet stricter California regulations. Operation at the lower rates of water did not affect combustor inspection and/or repair intervals. Operation on liquid fuels with high rates of water also did not result in premature distress. However, operation on gas fuel at high rates of water did cause premature distress in the combustors. To evaluate this phenomenon, a comprehensive test program was conducted; it demonstrated that the distress is the result of the temperature patterns in the combustor caused by the high rates of water. The test also indicated that there is no significant change in dynamic response levels in the combustor. This paper presents the test results, and the design features selected to substantially improve combustor wall temperature when operating on gas fuels, with the high rates of water injection required to meet California applications. Mechanical design features that improve combustor resistance to water injection-induced thermal gradients also are presented.


1959 ◽  
Vol 81 (4) ◽  
pp. 521-529 ◽  
Author(s):  
P. Deriaz ◽  
J. G. Warnock

The paper describes the origin of the new machine and its application to the storage scheme at Sir Adam Beck-Niagara where it operates as a reversible pump-turbine. Description is given of its hydraulic characteristics and of some of the more important mechanical design features.


Author(s):  
Darrin Willis ◽  
Scott B. Nokleby ◽  
Remon Pop-Iliev

This paper describes the mechanical design and analysis of a mobile-manipulator system comprised of a robot manipulator and a mobile base. The combination of the two is known as a mobile manipulator and combines the maneuverability of the mobile base with the accuracy of the robot manipulator. The mechanical design of a new mobile-manipulator system with the robot manipulator mounted on the front is discussed. The device features an innovative 2-DOF (degree-of-freedom) parallelogram coupling device that allows the base of the robot manipulator to translate vertically and roll longitudinally relative to the mobile base. The coupling device has dampers to reduce the vibrations caused by the motion of the mobile base on the robot manipulator and vice versa. The design features the use of omni-wheels that eliminate the problems inherent with traditional caster wheels.


2021 ◽  
Vol 1 ◽  
pp. 953-962
Author(s):  
Lewis Urquhart ◽  
Craig Fingland ◽  
Andrew Wodehouse ◽  
Brian Loudon

AbstractThis paper reports upon the design and development of a novel testing rig for the examination of additively manufactured auxetic componentry. By firstly reviewing the key challenges for practical researchers and exploring the range of approaches used to examine auxetic structures, we subsequently introduce a new testing configuration seeking to enhance the existing methods found within the literature. The developed testing configuration includes a novel mechanical design with a new method for component mounting offering advanced control of the boundary condition and a fully developed control interface which facilitates real-time analytics, a range of data acquisitions and integration with a CAD environment. This paper describes both the development of the mechanical design and the development of the control interface by exploring the key design features and documentation of the manufacturing and assembly process. Finally, we discuss how the presented testing configuration offers a new and flexible way of testing auxetic componentry with additional insights offered for future researchers who wish to recreate or adapt the testing setup for their own examinations of additively manufactured componentry.


Author(s):  
J. A. Wazyniak ◽  
L. M. Shaw ◽  
J. D. Essary

Acoustical and mechanical design features of NASA Lewis Research Center’s engine fan noise facility are described. Acoustic evaluation of the 1420-m (50,000-ft) chamber, which is lined with an array of stepped wedges, is described. Results from the evaluation in terms of cut-off frequency and non-anechoic areas near the walls are detailed. Fan models with 0.51-m (20-in.) diameters are electrically driven to 20,600 rpm in either the inlet mode (drawing air from the chamber) or exhaust mode (discharging air into the chamber) to facilitate study of both fore and aft fan noise. Inlet noise characteristics of the first fan tested, the JT8D Refan, are discussed and compared to full-scale levels. Turbulence properties of the inlet flow and acoustic results are compared with and without a turbulence reducing screen over the fan inlet.


Sign in / Sign up

Export Citation Format

Share Document