Different in situ hybridization patterns of mitochondrial DNA in cytochrome c oxidase-deficient extraocular muscle fibres in the elderly

1993 ◽  
Vol 422 (1) ◽  
pp. 7-15 ◽  
Author(s):  
J. Müller-Höcker ◽  
P. Seibel ◽  
K. Schneiderbanger ◽  
B. Kadenbach
1992 ◽  
Vol 110 (1-2) ◽  
pp. 169-177 ◽  
Author(s):  
Anders Oldfors ◽  
Nils-Göran Larsson ◽  
Elisabeth Holme ◽  
Már Tulinius ◽  
Bernhard Kadenbach ◽  
...  

Zootaxa ◽  
2022 ◽  
Vol 5091 (4) ◽  
pp. 546-558
Author(s):  
ZHAOYANG CHEN ◽  
FENGXIANG LIU ◽  
DAIQIN LI ◽  
XIN XU

This paper reports four new species of the primitively segmented spider genus Songthela from Chongqing Municipality, China, based on morphological characters of both males and females: S. jinyun sp. nov., S. longbao sp. nov., S. serriformis sp. nov. and S. wangerbao sp. nov. We also provide the GenBank accession codes of mitochondrial DNA barcode gene, cytochrome c oxidase subunit I (COI), for the holotype of four new species for future identification.  


2002 ◽  
Vol 12 (9) ◽  
pp. 858-864 ◽  
Author(s):  
J ELSON ◽  
D SAMUELS ◽  
M JOHNSON ◽  
D TURNBULL ◽  
P CHINNERY

2017 ◽  
pp. 155-176
Author(s):  
Miguel Lozano-Terol ◽  
María Juliana Rodríguez-García ◽  
José Galián

En este estudio se analizan dos fragmentos del gen de la citocromo c oxidasa subunidad I (COX1) del ADN mitocondrial de 61 individuos del género Rhynchophorus colectados en la Región de Murcia a fin de determinar su procedencia. El análisis filogenético del fragmento 1 de las muestras de la Región de Murcia conjuntamente con las secuencias disponibles en GenBank indica que los individuos corresponden a la especie Rhynchophorus ferrugineus.Las secuencias de Murcia se colapsan en un único haplotipo (H8 mediterráneo) que aparece dentro del clado de R. ferrugineus. De los análisis filogeográficos se infiere que el origen de los individuos de Murcia es Egipto. Adicionalmente, se examinó una región contigua del COX1 (fragmento 2) en la que las secuencias se colapsaron en dos haplotipos. In this research two fragments of the cytochrome c oxidase subunit I (COX1) gene of the mitochondrial DNA were analyzed in 61 individuals of the genus Rhynchophorus collected in the Region of Murcia with the aim of determining their origin. Phylogenetic analysis of fragment 1 of the samples collected in the Region of Murcia together with the available sequences in GenBank, indicated that these individuals correspond to the species R. ferrugineus. Sequences from Murcia collapsed into the H8 Mediterranean haplotype, which cluster into the R. ferrugineus clade. Phylogeographic analysis shows that the origin of the individuals collected in the Region of Murcia is Egypt. Additionally, a contiguous fragment of COX1 (fragment 2) was analyzed and the sequences collapsed into two haplotypes.


Blood ◽  
1997 ◽  
Vol 90 (12) ◽  
pp. 4961-4972 ◽  
Author(s):  
Norbert Gattermann ◽  
Stefan Retzlaff ◽  
Yan-Ling Wang ◽  
Götz Hofhaus ◽  
Jürgen Heinisch ◽  
...  

Mitochondrial iron overload in acquired idiopathic sideroblastic anemia (AISA) may be attributable to mutations of mitochondrial DNA (mtDNA), because these can cause respiratory chain dysfunction, thereby impairing reduction of ferric iron (Fe3+) to ferrous iron (Fe2+). The reduced form of iron is essential to the last step of mitochondrial heme biosynthesis. It is not yet understood to which part of the respiratory chain the reduction of ferric iron is linked. In two patients with AISA we identified point mutations of mtDNA affecting the same transmembrane helix within subunit I of cytochrome c oxidase (COX I; ie, complex IV of the respiratory chain). The mutations were detected by restriction fragment length polymorphism analysis and temperature gradient gel electrophoresis. One of the mutations involves a T → C transition in nucleotide position 6742, causing an amino acid change from methionine to threonine. The other mutation is a T → C transition at nt 6721, changing isoleucine to threonine. Both amino acids are highly conserved in a wide range of species. Both mutations are heteroplasmic, ie, they establish a mixture of normal and mutated mitochondrial genomes, which is typical of disorders of mtDNA. The mutations were present in bone marrow and whole blood samples, in isolated platelets, and in granulocytes, but appeared to be absent from T and B lymphocytes purified by immunomagnetic bead separation. They were not detected in buccal mucosa cells obtained by mouthwashes and in cultured skin fibroblasts examined in one of the patients. In both patients, this pattern of involvement suggests that the mtDNA mutation occurred in a self-renewing bone marrow stem cell with myeloid determination. Identification of two point mutations with very similar location suggests that cytochrome c oxidase plays an important role in the pathogenesis of AISA. COX may be the physiologic site of iron reduction and transport through the inner mitochondrial membrane.


Blood ◽  
1997 ◽  
Vol 90 (12) ◽  
pp. 4961-4972 ◽  
Author(s):  
Norbert Gattermann ◽  
Stefan Retzlaff ◽  
Yan-Ling Wang ◽  
Götz Hofhaus ◽  
Jürgen Heinisch ◽  
...  

Abstract Mitochondrial iron overload in acquired idiopathic sideroblastic anemia (AISA) may be attributable to mutations of mitochondrial DNA (mtDNA), because these can cause respiratory chain dysfunction, thereby impairing reduction of ferric iron (Fe3+) to ferrous iron (Fe2+). The reduced form of iron is essential to the last step of mitochondrial heme biosynthesis. It is not yet understood to which part of the respiratory chain the reduction of ferric iron is linked. In two patients with AISA we identified point mutations of mtDNA affecting the same transmembrane helix within subunit I of cytochrome c oxidase (COX I; ie, complex IV of the respiratory chain). The mutations were detected by restriction fragment length polymorphism analysis and temperature gradient gel electrophoresis. One of the mutations involves a T → C transition in nucleotide position 6742, causing an amino acid change from methionine to threonine. The other mutation is a T → C transition at nt 6721, changing isoleucine to threonine. Both amino acids are highly conserved in a wide range of species. Both mutations are heteroplasmic, ie, they establish a mixture of normal and mutated mitochondrial genomes, which is typical of disorders of mtDNA. The mutations were present in bone marrow and whole blood samples, in isolated platelets, and in granulocytes, but appeared to be absent from T and B lymphocytes purified by immunomagnetic bead separation. They were not detected in buccal mucosa cells obtained by mouthwashes and in cultured skin fibroblasts examined in one of the patients. In both patients, this pattern of involvement suggests that the mtDNA mutation occurred in a self-renewing bone marrow stem cell with myeloid determination. Identification of two point mutations with very similar location suggests that cytochrome c oxidase plays an important role in the pathogenesis of AISA. COX may be the physiologic site of iron reduction and transport through the inner mitochondrial membrane.


Sign in / Sign up

Export Citation Format

Share Document