A possible origin of RNA catalysis in multienzyme complexes

1989 ◽  
Vol 19 (1) ◽  
pp. 69-72 ◽  
Author(s):  
Matthew R. Edwards
2010 ◽  
Vol 89 (1) ◽  
pp. 145-155 ◽  
Author(s):  
Alvaro Gonzalez-Vogel ◽  
Jaime Eyzaguirre ◽  
Gabriela Oleas ◽  
Eduardo Callegari ◽  
Mario Navarrete

2001 ◽  
Vol 48 (2) ◽  
pp. 409-418 ◽  
Author(s):  
J Ciesiolka ◽  
J Wrzesinski ◽  
M Legiewicz ◽  
B Smólska ◽  
M Dutkiewicz

Although the delta ribozymes have been studied for more than ten years the most important information concerning their structure and mechanism of catalysis were only obtained very recently. The crystal structure of the genomic delta ribozyme turns out to be an excellent example of the extraordinary properties of RNA molecules to fold into uniquely compact structures. Details of the X-ray structure have greatly stimulated further studies on the folding of the ribozymes into functionally active molecules as well as on the mechanism of RNA catalysis. The ability of the delta ribozymes to carry out general acid-base catalysis by nucleotide side chains has been assumed in two proposed mechanisms of self-cleavage. Recently, considerable progress has been also made in characterizing the catalytic properties of trans-acting ribozyme variants that are potentially attractive tools in the strategy of directed RNA degradation.


2006 ◽  
Vol 72 (4) ◽  
pp. 2483-2490 ◽  
Author(s):  
Patthra Pason ◽  
Khin Lay Kyu ◽  
Khanok Ratanakhanokchai

ABSTRACT A facultatively anaerobic bacterium, Paenibacillus curdlanolyticus B-6, isolated from an anaerobic digester produces an extracellular xylanolytic-cellulolytic enzyme system containing xylanase, β-xylosidase, arabinofuranosidase, acetyl esterase, mannanase, carboxymethyl cellulase (CMCase), avicelase, cellobiohydrolase, β-glucosidase, amylase, and chitinase when grown on xylan under aerobic conditions. During growth on xylan, the bacterial cells were found to adhere to xylan from the early exponential growth phase to the late stationary growth phase. Scanning electron microscopic analysis revealed the adhesion of cells to xylan. The crude enzyme preparation was found to be capable of binding to insoluble xylan and Avicel. The xylanolytic-cellulolytic enzyme system efficiently hydrolyzed insoluble xylan, Avicel, and corn hulls to soluble sugars that were exclusively xylose and glucose. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of a crude enzyme preparation exhibited at least 17 proteins, and zymograms revealed multiple xylanases and cellulases containing 12 xylanases and 9 CMCases. The cellulose-binding proteins, which are mainly in a multienzyme complex, were isolated from the crude enzyme preparation by affinity purification on cellulose. This showed nine proteins by SDS-PAGE and eight xylanases and six CMCases on zymograms. Sephacryl S-300 gel filtration showed that the cellulose-binding proteins consisted of two multienzyme complexes with molecular masses of 1,450 and 400 kDa. The results indicated that the xylanolytic-cellulolytic enzyme system of this bacterium exists as multienzyme complexes.


Sign in / Sign up

Export Citation Format

Share Document