Chloride secretion by canine tracheal epithelium: IV. Basolateral membrane K permeability parallels secretion rate

1984 ◽  
Vol 77 (3) ◽  
pp. 187-199 ◽  
Author(s):  
Philip L. Smith ◽  
Raymond A. Frizzell
1983 ◽  
Vol 244 (6) ◽  
pp. F639-F645 ◽  
Author(s):  
M. J. Welsh

Addition of barium ion, Ba2+, to the submucosal bathing solution of canine tracheal epithelium reversibly decreased the short-circuit current and increased transepithelial resistance. The decrease in short-circuit current represented a decrease in the net rate of Cl secretion with no change in the rate of Na absorption. Intracellular microelectrode techniques and an equivalent electrical circuit analysis were used to localize the effect of Ba2+ to an inhibition of the permeability of the basolateral membrane to K. Ba2+ (2 mM) doubled basolateral membrane resistance, decreased the equivalent electromotive force at the basolateral membrane, and decreased the magnitude of the depolarization of basolateral membrane voltage produced by increasing the submucosal K concentration. The inhibition of the basolateral K permeability depolarized the negative intracellular voltage, resulting in both a decrease in the driving force for Cl exit and an estimated increase in intracellular Cl concentration. These studies indicate that there is a Ba2+-inhibitable K conductance at the basolateral membrane of tracheal epithelial cells and that the K permeability plays an important role in the generation of the negative intracellular electrical potential that provides the driving force for Cl exit from the cell.


1991 ◽  
Vol 261 (2) ◽  
pp. L188-L194 ◽  
Author(s):  
P. I. Plews ◽  
Z. A. Abdel-Malek ◽  
C. A. Doupnik ◽  
G. D. Leikauf

The endothelins (ET) are a group of isopeptides produced by a number of cells, including canine tracheal epithelial cells. Because these compounds are endogenous peptides that may activate eicosanoid metabolism, we investigated the effects of ET on Cl secretion in canine tracheal epithelium. Endothelin 1 (ET-1) was found to produce a dose-dependent change in short-circuit current (Isc) that increased slowly and reached a maximal value within 10-15 min. When isopeptides of ET were compared, 300 nM ET-1 and ET-2 produced comparable maximal increases in Isc, whereas ET-3 produced smaller changes in Isc (half-maximal concentrations of 2.2, 7.2, and 10.4 nM, respectively). Ionic substitution of Cl with nontransported anions, iodide and gluconate, reduced ET-1-induced changes in Isc. Furthermore, the response was inhibited by the NaCl cotransport inhibitor, furosemide. In paired tissues, ET-1 significantly increased mucosal net 36Cl flux without significant effect on 22Na flux. The increase in Isc induced by ET was diminished by pretreatment with indomethacin. The second messengers mediating the increase in Isc were investigated in cultured canine tracheal epithelial cells. ET-1 stimulated the release of [3H]arachidonate from membrane phospholipids, increased intracellular Ca2+ (occasionally producing oscillations), and increased adenosine 3',5'-cyclic monophosphate accumulation. The latter was diminished by indomethacin. Thus ET is a potent agonist of Cl secretion (with the isopeptides having the following potency: ET-1 greater than or equal to ET-2 greater than ET-3) and acts, in part, through a cyclooxygenase-dependent mechanism.


1990 ◽  
Vol 259 (6) ◽  
pp. L459-L467 ◽  
Author(s):  
G. J. Tessier ◽  
T. R. Traynor ◽  
M. S. Kannan ◽  
S. M. O3'Grady

Equine tracheal epithelium, stripped of serosal muscle, mounted in Ussing chambers, and bathed in plasmalike Ringer solution generates a serosa-positive transepithelial potential of 10–22 mV and a short-circuit current (Isc) of 70–200 microA/cm2. Mucosal amiloride (10 microM) causes a 40–60% decrease in Isc and inhibits the net transepithelial Na flux by 95%. Substitution of Cl with gluconate resulted in a 30% decrease in basal Isc. Bicarbonate substitution with 20 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid decreased the Isc by 21%. The Cl-dependent Isc was inhibited by serosal addition of 1 mM amiloride. Bicarbonate replacement or serosal amiloride (1 mM) inhibits the net Cl flux by 72 and 69%, respectively. Bicarbonate replacement significantly reduces the effects of serosal amiloride (1 mM) on Isc, indicating its effect is HCO3 dependent. Addition of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP; 100 microM) causes a 40% increase in Isc. This effect is inhibited by subsequent addition of 10 microM serosal bumetanide. Bumetanide (10 microM) reduces net Cl secretion following stimulation with 8-BrcAMP (100 microM). Serosal addition of BaCl2 (1 mM) causes a reduction in Isc equal to that following Cl replacement in the presence or absence of 100 microM cAMP. These results suggest that 1) Na absorption depends on amiloride-inhibitable Na channels in the apical membrane, 2) Cl influx across the basolateral membrane occurs by both a Na-H/Cl-HCO3 parallel exchange mechanism under basal conditions and by a bumetanide-sensitive Na-(K?)-Cl cotransport system under cAMP-stimulated conditions, and 3) basal and cAMP-stimulated Cl secretion depends on Ba-sensitive K channels in the basolateral membrane.


1995 ◽  
Vol 269 (5) ◽  
pp. L561-L566 ◽  
Author(s):  
B. Q. Shen ◽  
R. J. Mrsny ◽  
W. E. Finkbeiner ◽  
J. H. Widdicombe

We have tested two hypotheses: 1) the cystic fibrosis transmembrane conductance regulator (CFTR) represents the predominant Cl conductance in the apical membrane of human tracheal epithelium, and 2) CFTR in this tissue is close to maximally activated under baseline conditions. In support of the first hypothesis, we found 1) when the level of differentiation of cultures was varied by varying the culture conditions, there was a significant positive correlation between the levels of CFTR and the magnitude of mediator-induced Cl secretion. 2) Amiloride-insensitive baseline short-circuit current (Isc) and mediator-induced increases in Isc were inhibited by diphenylamine-2-carboxylic acid (DPAC) but not by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), a pharmacology consistent with passage of apical membrane Cl current through CFTR; Ca-activated Cl channels are inhibited by DIDS but not by DPAC. 3) Raising temperature from 22 degrees to 37 degrees C increased 125I efflux, and this increase was inhibited by DPAC and blockers of protein kinase A, but not by DIDS or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester. In support of the second hypothesis, we have earlier shown [M. Yamaya, W.E. Finkbeiner, S.Y. Chun, and J.H. Widdicombe. Am. J. Physiol. 262 (Lung Cell. Mol. Physiol. 6): L713-L724, 1992] that adenosine 3',5'-cyclic monophosphate (cAMP)-elevating agents are essentially without effect on Isc across primary cultures of human tracheal epithelium. Here, we further show that these agents are also usually without effect on 125I efflux; the mean increase in efflux in response to elevating cAMP was approximately 20% that of raising temperature from 22 degrees to 37 degrees C.


1986 ◽  
Vol 250 (5) ◽  
pp. F850-F859 ◽  
Author(s):  
O. A. Candia ◽  
P. Cook

The Na+-K+ pump flux ratio and the Na+ and K+ permeability of the basolateral membrane of the isolated frog corneal epithelium were studied with the aid of microelectrodes by analyzing the effects of ouabain, Ba2+, and amphotericin B. The experiments were done in Cl(-)-free solutions, a situation that approximates that of static head. Ouabain produced a quick depolarization of the potential difference across the basolateral membrane (PDb) from -72 to -62 mV without a change in resistance. Ba2+ (3 mM) rapidly lowered PDb from -74 to -57 mV and decreased the apical-to-basolateral resistance ratio. The effects of ouabain and Ba2+ were additive. The Na+-K+ flux ratio at the pump was calculated to be 1.78, substantially less than when the tissue is in a level flow condition, suggesting a variable stoichiometry. The K+ and Na+ resistances of the basolateral membrane were 15.7 and 5.5 k omega X cm2, respectively, allowing K+ and Na+ currents that approximately matched those produced by the Na+-K+ pump. The resistance of the basolateral membrane (4.0 k omega X cm2) was double that reported in Cl(-)-rich solutions, suggesting that Cl- contributes to the conductance of this membrane.


1997 ◽  
Vol 273 (1) ◽  
pp. C148-C160 ◽  
Author(s):  
R. W. Freel ◽  
M. Hatch ◽  
N. D. Vaziri

The ability of a Cl-secreting epithelium to support net secretion of an anion other than a halide was investigated with 35SO4 flux measurements across the isolated, short-circuited rabbit distal colon. In most experiments, 36Cl fluxes were simultaneously measured to validate the secretory capacity of the tissues. Serosal addition of dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP, 0.5 mM) stimulated a sustained net secretion of SO4 (about -3.0 nmol.cm-2.h-1 from a 0.20 mM solution) via an increase in the serosal-to-mucosal unidirectional flux, whereas Ca ionophore A-23187 (1 microM, serosal) produced a more transient stimulation of SO4 and Cl secretion. Net adenosine 3',5'-cyclic monophosphate (cAMP)-dependent SO4 and Cl secretion were strongly voltage sensitive, principally through the potential dependence of the serosal-to-mucosal fluxes, indicating an electrogenic transport process. Symmetrical replacement of either Na, K, or Cl inhibited cAMP-dependent SO4 secretion, whereas HCO3-free buffers had no effect on SO4 secretion. Serosal bumetanide (50 microM) or furosemide (100 microM) reduced DBcAMP-stimulated SO4 and Cl secretion, whereas serosal 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid or 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (50 microM) blocked DBcAMP-induced SO4 secretion while enhancing net Cl secretion and short-circuit current. Mucosal 5-nitro-2-(3-phenylpropylamino)benzoic acid partially inhibited SO4 secretion and completely inhibited Cl secretion. It is concluded that secretagogue-stimulated SO4 secretion, like Cl secretion, may be an electrogenic process mediated by diffusive efflux through an apical anion conductance. Cellular accumulation of SO4 across the basolateral membrane appears to be achieved by a mechanism that is distinct from that employed by Cl.


1994 ◽  
Vol 266 (5) ◽  
pp. C1440-C1452 ◽  
Author(s):  
M. Haas ◽  
D. G. McBrayer

Chloride secretion in mammalian airway epithelia is stimulated by beta-adrenergic agonists via an adenosine 3',5'-cyclic monophosphate (cAMP)-dependent mechanism and by apical triphosphate nucleotides (ATP, UTP) via a cAMP-independent mechanism. Both types of secretagogues are known to stimulate apical Cl channels in airway cells; however, to maintain a stimulated rate of secretion, basolateral Cl influx via Na-K-Cl cotransport must be upregulated in parallel with apical Cl efflux. To examine the regulation of basolateral cotransport activity and its relationship to apical Cl efflux, we examined Cl transport in confluent primary cultures of dog tracheal epithelial cells treated with nystatin, an antibiotic that increases the permeability of plasma membranes to small monovalent ions, including Cl. By applying nystatin to the apical membrane of these cultures, apical Cl permeability could be increased to the point where transepithelial Cl transport is limited by transport across the basolateral membrane, which reflects primarily the activity of the cotransporter. In cultures of tracheal cells not treated with nystatin, transepithelial (basolateral-to-apical) 36Cl flux was increased two- to threefold by exposure to isoproterenol (5 microM, basolateral) or apical UTP (10 microM). Apical application of nystatin (400 units/ml) increased the basal level of transepithelial 36Cl flux approximately 1.5-fold and eliminated UTP stimulation of this flux, although an approximately twofold stimulation by isoproterenol persisted. Nystatin treatment also abolished UTP stimulation of saturable, basolateral [3H]bumetanide binding, a measure of functioning Na-K-Cl cotransporters in these cells; isoproterenol stimulation of binding was only mildly inhibited by nystatin treatment. Lowering intracellular Cl concentration ([Cl]i) by incubating cultures with apical media containing nystatin and reduced [Cl] (NO3 replacement) increased both basolateral-to-apical 36Cl flux and [3H]bumetanide binding in the absence of secretagogues or cell shrinkage. The results support our previous suggestion, based entirely on [3H]bumetanide binding [M. Haas, D. G. McBrayer, and J. R. Yankaskas. Am. J. Physiol. 264 (Cell. Physiol. 32): C189-C200, 1993], that UTP stimulation of basolateral Na-K-Cl cotransport in airway epithelial cells is entirely secondary to, and requires, an increase in apical Cl efflux, and further suggest that a decrease in [Cl]i may be a signal for cotransport activation in response to UTP. In addition, a cAMP-dependent cascade initiated by isoproterenol appears to directly stimulate the cotransporter.


1986 ◽  
Vol 250 (4) ◽  
pp. C646-C650 ◽  
Author(s):  
S. R. Shorofsky ◽  
M. Field ◽  
H. A. Fozzard

Na-selective microelectrodes were employed to investigate the mechanism of Cl secretion by canine tracheal epithelium. In control tissues with a mean short-circuit current (Isc) of 30.1 microA/cm2, the intracellular Na activity (aiNa) was 10.7 mM. Following steady-state stimulation of Cl secretion with epinephrine (Isc = 126.4 microA/cm2), aiNa was 21.3 mM. These data indicate that there is sufficient energy in the Na gradient to drive Cl secretion by this tissue. When analyzed with simple kinetic models for the Na-K pump, they also suggest that the basolateral entry step involves the Na-K-2Cl cotransporter.


1998 ◽  
Vol 275 (6) ◽  
pp. L1219-L1227 ◽  
Author(s):  
S. N. Uyekubo ◽  
H. Fischer ◽  
A. Maminishkis ◽  
B. Illek ◽  
S. S. Miller ◽  
...  

Elevated levels of Na and Cl in airway surface liquid may play a major role in the airway pathology of cystic fibrosis (CF) (J. J. Smith, S. M. Travis, E. P. Greenberg, and M. J. Welsh. Cell85: 229–236, 1996) and could be caused by block of transcellular Cl absorption due to lack of a functional CF transmembrane conductance regulator (CFTR). To test for transcellular absorption of Cl across non-CF epithelium, we studied how fluid absorption was affected by the opening and closing of Cl channels. Forskolin (an activator of CFTR) tripled fluid absorption across primary cultures of bovine tracheal epithelium but had no effect on human cells. However, in both species, fluid absorption was markedly inhibited by 5-nitro-2-(3-phenylpropylamino)benzoate, a blocker of CFTR. Microelectrode studies suggested that the magnitude of the absorptive response to forskolin in bovine cells depended on the size of an inwardly directed electrochemical driving force for Cl movement across the apical membrane. Patch-clamp measurements of bovine cells revealed CFTR in the apical membrane and a cAMP-activated, inwardly rectifying Cl channel in the basolateral membrane. We conclude that a significant fraction of absorbed Cl passes transcellularly in bovine tracheal epithelial cultures, with CFTR as the path of entry in the apical membrane and a novel cAMP-activated Cl channel as the exit route in the basolateral membrane. Our data further indicate that a similar pathway may exist in non-CF human tracheal epithelium.


Sign in / Sign up

Export Citation Format

Share Document