The fundamental equations in finite element method of coupled thermo-elastic plane problem

1980 ◽  
Vol 1 (2) ◽  
pp. 265-277
Author(s):  
Wang Hong-gang
2019 ◽  
Vol 35 (5) ◽  
pp. 591-600 ◽  
Author(s):  
A. Polat ◽  
Y. Kaya ◽  
K. Bendine ◽  
T.Ş. Özşahin

ABSTRACTIn this study, continuous contact problem in the functionally graded (FG) layer loaded with two rigid flat blocks resting on the elastic semi-infinite plane was analyzed by the finite element method. The two-dimensional numerical model of the FG layer was made with the software added to the ANSYS program. This software can be adapted to all contact problem types by making minor changes. The accuracy check of the program was performed by comparing with the analytical solution of the problem by homogeneous layer and its solution by the finite element method. So, fast and practical solutions can be obtained by the developed finite element method on many applications such as; automotive, aviation and space industry applications. The comparisons made showed that the proposed solution gave good results at acceptable levels. In the problem, it was thought that all surfaces were frictionless. The external loads P and Q were transmitted to the FG layer via two flat rigid blocks. Normal stresses between the FG layer and the elastic plane, initial separation loads, initial separation distances and contact stresses under the blocks were investigated for various dimensionless quantities.


1997 ◽  
Vol 123 (9) ◽  
pp. 1225-1235 ◽  
Author(s):  
Morteza A. M. Torkamani ◽  
Mustafa Sonmez ◽  
Jianhua Cao

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Ge Tian ◽  
Xiang-Rong Fu ◽  
Ming-Wu Yuan ◽  
Meng-Yan Song

This paper presents a novel way to calculate the characteristic solutions of the anisotropy V-notch plane problem. The material eigen equation of the anisotropy based on the Stroh theory and the boundary eigen equation of the V-notch plane problem are studied separately. A modified Müller method is utilized to calculate characteristic solutions of anisotropy V-notch plane problem, which are employed to formulate the analytical trial functions (ATF) in the associated finite element method. The numerical examples show that the proposed subregion accelerated Müller method is an efficient method to calculate the solutions of the equation involving the complex variables. The proposed element ATF-VN based on the analytical trial functions, which contain the characteristic solutions of the anisotropy V-notch problem, presents good performance in the benchmarks.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document