On the criterion for the absolute stability of the control system

1982 ◽  
Vol 3 (2) ◽  
pp. 267-279 ◽  
Author(s):  
Liao Xiao-xin
2020 ◽  
Vol 8 (1) ◽  
pp. 08-15 ◽  
Author(s):  
Sergey Mikhailovich Afonin

We obtained the condition absolute stability on the derivative for the control system of electromagnetoelastic actuator for communication equipment. We applied the frequency methods for Lyapunov stable control system to calculate the condition absolute stability control system of electromagnetoelastic actuator. We used Yakubovich criterion absolute stability system with the condition on the derivative. The aim of this work is to determine the condition of the absolute stability on the derivative for the control system of electromagnetoelastic actuator. We received the stationary set of the control system of the hysteresis deformation of the electromagnetoelastic actuator. The stationary set is the segment of the straight line.


Author(s):  
Sergey M Afonin

The stationary set of the control system of the hysteresis deformation of the electro magneto elastic actuator is the segment of the straight line. The aim of this work is to determine the condition of the absolute stability on the derivative for control system of the deformation of the electro magneto elastic actuator in automatic nanomanipulators for Nano science and Nano biomedicine research. The frequency methods for Lyapunov stable control system are used to calculate the condition the absolute stability of the control system with electro magneto elastic actuator. In result we obtained the condition of the absolute stability on the derivative for the control system with the electro magneto elastic actuator in automatic nanomanipulators for Nano science and Nano biomedicine research.


The stationary set of the control system of the hysteresis deformation of the electro magneto elastic actuator is the segment of the straight line. The aim of this work is to determine the condition of the absolute stability on the derivative for control system of the deformation of the electro magneto elastic actuator for nanobioengineering and nanobiomedical science research. The frequency methods for Lyapunov stable control system are used to calculate the absolute stability of the control system with electro magneto elastic actuator. In result we obtained the condition of the absolute stability on the derivative for the control system with the electro magneto elastic actuator for nanobioengineering and nanobiomedical science research.


2020 ◽  
Vol 10 (10) ◽  
pp. 52-58
Author(s):  
Sergey M. AFONIN ◽  

An electroelastic actuator for nanomechatronics is used in nanotechnology, adaptive optics, microsurgery, microelectronics, and biomedicine to actuate or control mechanisms, systems based on the electroelastic effect, and to convert electrical signals into mechanical displacements and forces. In nanomechatronic systems, a piezoactuator is used in scanning microscopy, laser systems, in astronomy for precision alignment, for compensation of temperature, gravitational deformations and atmospheric turbulence, focusing, and stabilizing the image. In this study, a condition for absolute stability of an electroelastic actuator control system for nanomechatronics under deterministic and random inputs is obtained. A number of equilibrium positions in an electroelastic actuator mechatronic control system are found, the totality of which is represented by a straight line segment. The electroelastic actuator’s deformation control system dead band relative width is determined for the actuator’s symmetric and asymmetric hysteresis characteristics. Under deterministic inputs and with fulfilling the condition for the derivative of the nonlinear hysteresis actuator deformation characteristic, the set of equilibrium positions of the electroelastic actuator control system for nanomechatronics is absolutely stable. Under random inputs, the system absolute stability with respect to the mathematical expectations of the electroelastic actuator mechatronic control system equilibrium positions has been determined subject to fulfilling the condition on the derivative of the actuator hysteresis characteristic.


Sign in / Sign up

Export Citation Format

Share Document