A linear time algorithm for the maximum matching problem on cographs

1993 ◽  
Vol 33 (3) ◽  
pp. 420-432
Author(s):  
Ming-Shing Yu ◽  
Cheng-Hsing Yang
2017 ◽  
Vol Vol. 18 no. 2, Permutation... (Permutation Patterns) ◽  
Author(s):  
Both Neou ◽  
Romeo Rizzi ◽  
Stéphane Vialette

Given permutations σ of size k and π of size n with k < n, the permutation pattern matching problem is to decide whether σ occurs in π as an order-isomorphic subsequence. We give a linear-time algorithm in case both π and σ avoid the two size-3 permutations 213 and 231. For the special case where only σ avoids 213 and 231, we present a O(max(kn 2 , n 2 log log n)-time algorithm. We extend our research to bivincular patterns that avoid 213 and 231 and present a O(kn 4)-time algorithm. Finally we look at the related problem of the longest subsequence which avoids 213 and 231.


2020 ◽  
Author(s):  
Bruno P. Masquio ◽  
Paulo E. D. Pinto ◽  
Jayme L. Szwarcfiter

Graph matching problems are well known and studied, in which we want to find sets of pairwise non-adjacent edges. Recently, there has been an interest in the study of matchings in which the induced subgraphs by the vertices of matchings are connected or disconnected. Although these problems are related to connectivity, the two problems are probably quite different, regarding their complexity. While the complexity of finding a maximum disconnected mat- ching is still unknown for a general graph, the one for connected matchings can be solved in polynomial time. Our contribution in this paper is a linear time algorithm to find a maximum connected matching of a general connected graph, given a general maximum matching as input.


1998 ◽  
Vol 66 (3) ◽  
pp. 161-164 ◽  
Author(s):  
Carlos A. Cabrelli ◽  
Ursula M. Molter

Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 293
Author(s):  
Xinyue Liu ◽  
Huiqin Jiang ◽  
Pu Wu ◽  
Zehui Shao

For a simple graph G=(V,E) with no isolated vertices, a total Roman {3}-dominating function(TR3DF) on G is a function f:V(G)→{0,1,2,3} having the property that (i) ∑w∈N(v)f(w)≥3 if f(v)=0; (ii) ∑w∈N(v)f(w)≥2 if f(v)=1; and (iii) every vertex v with f(v)≠0 has a neighbor u with f(u)≠0 for every vertex v∈V(G). The weight of a TR3DF f is the sum f(V)=∑v∈V(G)f(v) and the minimum weight of a total Roman {3}-dominating function on G is called the total Roman {3}-domination number denoted by γt{R3}(G). In this paper, we show that the total Roman {3}-domination problem is NP-complete for planar graphs and chordal bipartite graphs. Finally, we present a linear-time algorithm to compute the value of γt{R3} for trees.


1976 ◽  
Author(s):  
A. K. Jones ◽  
R. J. Lipton ◽  
L. Snyder

2000 ◽  
Vol 11 (03) ◽  
pp. 365-371 ◽  
Author(s):  
LJUBOMIR PERKOVIĆ ◽  
BRUCE REED

We present a modification of Bodlaender's linear time algorithm that, for constant k, determine whether an input graph G has treewidth k and, if so, constructs a tree decomposition of G of width at most k. Our algorithm has the following additional feature: if G has treewidth greater than k then a subgraph G′ of G of treewidth greater than k is returned along with a tree decomposition of G′ of width at most 2k. A consequence is that the fundamental disjoint rooted paths problem can now be solved in O(n2) time. This is the primary motivation of this paper.


Sign in / Sign up

Export Citation Format

Share Document