Transient gyriform brightness on non-contrast enhanced computed tomography (CT) brain scan of seven infants

1991 ◽  
Vol 21 (3) ◽  
pp. 189-192 ◽  
Author(s):  
P. J. Close ◽  
H. M. Carty
2014 ◽  
Vol 18 (1) ◽  
Author(s):  
Cornelia Minné ◽  
Margaret E. Kisansa ◽  
Nazeema Ebrahim ◽  
Farhana E. Suleman ◽  
Nonjabulo Z. Makhanya

Background: Even though magnetic resonance imaging (MRI) is the gold standard investigation for intracranial pathology, it is not widely available in developing countries and computed tomography (CT) of the brain remains the first-line investigation for patients with suspected intracranial pathology. It is generally accepted that certain intracranial pathology can be missed on non-contrast-enhanced CT (NECT) of the brain if a contrast-enhanced CT (CECT) is not done. We have to consider on the one hand the risk of delayed or missed diagnosis and on the other hand the cost, increased radiation exposure and contrast-induced reactions. Advances in CT technology have also improved the resolution of CT scan images, making it easier to identify pathology on an NECT of the brain. To date, no study comparing NECT to CECT of the brain, utilising 64-slice CT technology, has been published.Objectives: To determine the prevalence of undiagnosed abnormalities on non-contrast-enhanced computed tomography (NECT) scans of the brain reported as normal, on a 64-slice CT scanner.Method: A descriptive retrospective study was undertaken of CT brain scans done during a 12-month period at a tertiary provincial hospital in the Northern Tshwane district of Gauteng, South Africa. The CT brain scans were evaluated by three reviewers (general radiologists). The NECT and contrast-enhanced computed tomography (CECT) scans of the brain were reviewed independently on separate occasions. Reviewers were blinded to patient history, each other’s interpretation, and to their own interpretation of the NECT when evaluating the CECT and vice versa. Discrepancies in interpretation were resolved during a consensus meeting between all three reviewers. The reviewers also re-evaluated the NECT scans of the cases with undiagnosed abnormal findings during this session. A decision was made pertaining to the visibility of the abnormal findings on the NECT scan.Results: In this study, 3.28% of cases had abnormal findings undiagnosed by three reviewers on the NECT scans. Re-evaluation by the panel reduced this to 1.42%, indicating a reading error of 1.85%.Conclusion: There is a small prevalence of missed abnormal findings on the NECT scan when using only NECT. Omitting unnecessary CECT will reduce the radiation exposure to the patient and reduce the risk of adverse events from the use of intravenous iodinated contrast. Alternatively, doing only a CECT scan would reduce the risk of missing abnormal findings and would also decrease the patient’s exposure to radiation.


2011 ◽  
Vol 46 (9) ◽  
pp. 586-593 ◽  
Author(s):  
Scott M. Thompson ◽  
Juan C. Ramirez-Giraldo ◽  
Bruce Knudsen ◽  
Joseph P. Grande ◽  
Jodie A. Christner ◽  
...  

Author(s):  
Frederik Pauwels ◽  
Angela Hartmann ◽  
John Al-Alawneh ◽  
Paul Wightman ◽  
Jimmy Saunders

2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
P Poskaite ◽  
M Pamminger ◽  
C Kranewitter ◽  
C Kremser ◽  
M Reindl ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Background The natural history of thoracic aortic aneurysm (TAA) is one of progressive expansion. Asymptomatic patients who do not meet criteria for repair require conservative management including ongoing aneurysm surveillance, mostly carried out by contrast-enhanced computed tomography angiography (CTA). Purpose To prospectively compare image quality and reliability of a prototype non-contrast, self-navigated 3D whole-heart magnetic resonance angiography (MRA) with contrast-enhanced computed tomography angiography (CTA) for sizing of thoracic aortic aneurysm (TAA). Methods Self-navigated 3D whole-heart 1.5 T MRA was performed in 20 patients (aged 67 ± 8.6 years, 75% male) for sizing of TAA; a subgroup of 18 (90%) patients underwent additional contrast-enhanced CTA on the same day. Subjective image quality was scored according to a 4-point Likert scale and ratings between observers were compared by Cohen’s Kappa statistics. Continuous MRA and CTA measurements were analyzed with regression and Bland-Altman analysis. Results Overall subjective image quality as rated by two observers was 1 [interquartile range (IQR) 1-2] for self-navigated MRA and 1.5 [IQR 1-2] for CTA (p = 0.717). For MRA a perfect inter-observer agreement was found for presence of artefacts and subjective image sharpness (κ=1). Subjective signal inhomogeneity correlated highly with objectively quantified inhomogeneity of the blood pool signal (r = 0.78-0.824, all p <0.0001). Maximum diameters of TAA as measured by self-navigated MRA and CTA showed excellent correlation (r = 0.997, p < 0.0001) without significant inter-method bias (bias -0.0278, lower and upper limit of agreement -0.74 and 0.68, p = 0.749). Inter- and intraobserver correlation of aortic aneurysm as measured by MRA was excellent (r = 0.963 and 0.967, respectively) without significant bias (all p ≤ 0.05). Conclusion Self-navigated 3D whole-heart MRA enables reliable contrast- and radiation free aortic dilation surveillance without significant difference to standardized CTA while providing predictable acquisition time and by offering excellent image quality. Abstract Figure.


Sign in / Sign up

Export Citation Format

Share Document