Ultrastructure of meiosis in the hollyhock rust fungus,Puccinia malvacearum

PROTOPLASMA ◽  
1981 ◽  
Vol 108 (3-4) ◽  
pp. 265-288 ◽  
Author(s):  
K. L. O'Donnell ◽  
D. J. McLaughlin
PROTOPLASMA ◽  
1981 ◽  
Vol 108 (3-4) ◽  
pp. 245-263 ◽  
Author(s):  
K. L. O'Donnell ◽  
D. J. McLaughlin

Plant Biology ◽  
2001 ◽  
Vol 3 (4) ◽  
pp. 437-442 ◽  
Author(s):  
B. Classen ◽  
F. Amelunxen ◽  
W. Blaschek

Author(s):  
Robert W. Roberson

The use of cryo-techniques for the preparation of biological specimens in electron microscopy has led to superior preservation of ultrastructural detail. Although these techniques have obvious advantages, a critical limitation is that only 10-40 μm thick cells and tissue layers can be frozen without the formation of distorting ice crystals. However, thicker samples (600 μm) may be frozen well by rapid freezing under high-pressure (2,100 bar). To date, most work using cryo-techniques on fungi have been confined to examining small, thin-walled structures. High-pressure freezing and freeze substitution are used here to analysis pre-germination stages of specialized, sexual spores (teliospores) of the plant pathogenic fungus Gymnosporangium clavipes C & P.Dormant teliospores were incubated in drops of water at room temperature (25°C) to break dormancy and stimulate germination. Spores were collected at approximately 30 min intervals after hydration so that early cytological changes associated with spore germination could be monitored. Prior to high-pressure freezing, the samples were incubated for 5-10 min in a 20% dextran solution for added cryoprotection during freezing. Forty to 50 spores were placed in specimen cups and holders and immediately frozen at high pressure using the Balzers HPM 010 apparatus.


2010 ◽  
Vol 5 (10) ◽  
pp. 423-428
Author(s):  
Marcia Stone
Keyword(s):  

2016 ◽  
Vol 106 (4) ◽  
pp. 380-385 ◽  
Author(s):  
J. A. Kolmer ◽  
M. A. Acevedo

Collections of Puccinia triticina, the wheat leaf rust fungus, were obtained from tetraploid and hexaploid wheat in the central highlands of Ethiopia, and a smaller number from Kenya, from 2011 to 2013, in order to determine the genetic diversity of this wheat pathogen in a center of host diversity. Single-uredinial isolates were derived and tested for virulence phenotype to 20 lines of Thatcher wheat that differ for single leaf rust resistance genes and for molecular genotypes with 10 simple sequence repeat (SSR) primers. Nine virulence phenotypes were described among the 193 isolates tested for virulence. Phenotype BBBQJ, found only in Ethiopia, was predominantly collected from tetraploid wheat. Phenotype EEEEE, also found only in Ethiopia, was exclusively collected from tetraploid wheat and was avirulent to the susceptible hexaploid wheat ‘Thatcher’. Phenotypes MBDSS and MCDSS, found in both Ethiopia and Kenya, were predominantly collected from common wheat. Phenotypes CCMSS, CCPSS, and CBMSS were found in Ethiopia from common wheat at low frequency. Phenotypes TCBSS and TCBSQ were found on durum wheat and common wheat in Kenya. Four groups of distinct SSR genotypes were described among the 48 isolates genotyped. Isolates with phenotypes BBBQJ and EEEEE were in two distinct SSR groups, and isolates with phenotypes MBDSS and MCDSS were in a third group. Isolates with CCMSS, CCPSS, CBMSS, TCBSS, and TCBSQ phenotypes were in a fourth SSR genotype group. The diverse host environment of Ethiopia has selected and maintained a genetically divergent population of P. triticina.


Plant Disease ◽  
1999 ◽  
Vol 83 (2) ◽  
pp. 108-113 ◽  
Author(s):  
Craig M. Sandlin ◽  
James R. Steadman ◽  
Carlos M. Araya ◽  
Dermot P. Coyne

Five isolates of the bean rust fungus Uromyces appendiculatus were shown to be specifically virulent on bean genotypes of Andean origin. This specificity was demonstrated by the virulence of five pairs of isolates on a differential set of 30 Phaseolus vulgaris landraces. Each isolate pair was from a different country in the Americas and consisted of one Andean-specific isolate and one nonspecific isolate. Of the differential P. vulgaris landraces, 15 were of Middle American origin and 15 were of Andean origin. The Andean-specific rust isolates were highly virulent on Andean landraces but not on landraces of Middle American origin. Rust isolates with virulence to Middle American landraces were also generally virulent on Andean material; no truly Middle American-specific isolates were found. Random amplified polymorphic DNA (RAPD) analysis of the rust isolates also distinguished the two groups. Four of the Andean-specific rust isolates formed a distinct group compared to four of the nonspecific isolates. Two of the isolates, one from each of the two virulence groups, had intermediate RAPD banding patterns, suggesting that plasmagomy but not karyogamy occurred between isolates of the two groups.


2014 ◽  
Vol 5 ◽  
Author(s):  
Jana Sperschneider ◽  
Hua Ying ◽  
Peter N. Dodds ◽  
Donald M. Gardiner ◽  
Narayana M. Upadhyaya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document