New conditions for averaging of nonlinear dirichlet problems in perforated domains

1996 ◽  
Vol 48 (5) ◽  
pp. 753-774 ◽  
Author(s):  
I. V. Skrypnik
1994 ◽  
Vol 04 (03) ◽  
pp. 373-407 ◽  
Author(s):  
GIANNI DAL MASO ◽  
ADRIANA GARRONI

Let A be a linear elliptic operator of the second order with bounded measurable coefficients on a bounded open set Ω of Rn and let (Ωh) be an arbitrary sequence of open subsets of Ω. We prove the following compactness result: there exist a subsequence, still denoted by (Ωh), and a positive Borel measure μ on Ω, not charging polar sets, such that, for every f∈H−1(Ω) the solutions [Formula: see text] of the equations Auh=f in Ωh, extended to 0 on Ω\Ωh, converge weakly in [Formula: see text] to the unique solution [Formula: see text] of the problem [Formula: see text] When A is symmetric, this compactness result is already known and was obtained by Γ-convergence techniques. Our new proof, based on the method of oscillating test functions, extends the result to the non-symmetric case. The new technique, which is completely independent of Γ-convergence, relies on the study of the behavior of the solutions [Formula: see text] of the equations [Formula: see text] where A* is the adjoint operator. We prove also that the limit measure μ does not change if A is replaced by A*. Moreover, we prove that µ depends only on the symmetric part of the operator A, if the coefficients of the skew-symmetric part are continuous, while an explicit example shows that μ may depend also on the skew-symmetric part of A, when the coefficients are discontinuous.


Author(s):  
Viêt Há Hoáng

We study the singularly perturbed problem —εαΔuε + uε = f (α > 0) with the Dirichlet boundary condition in a perforated domain, in which the holes are distributed periodically with period 2ε throughout a fixed domain Ω. The asymptotic behaviour of uε when ε → 0, together with corrector results and error estimates in L2(Ω), are deduced for all sizes of holes. The behaviour of uε in is obtained for the cases where the size of holes is of order ε or is of a sufficiently smaller order. When the holes' size is of a sufficiently small order, as expected, uε has similar behaviour to that in the case of a non-varying domain.


Author(s):  
J. Casado-Díaz

The aim of the present paper is to adapt the method of two-scale convergence to the homogenization of a pseudomonotone Dirichlet problem in perforated domains with periodic structure. The limit problem and a corrector result are obtained.


Author(s):  
Gianni Dal Maso ◽  
Annalisa Malusa

Given an elliptic operator L on a bounded domain Ω ⊆ Rn, and a positive Radon measure μ on Ω, not charging polar sets, we discuss an explicit approximation procedure which leads to a sequence of domains Ωh ⊇ Ω with the following property: for every f ∈ H−1(Ω) the sequence uh of the solutions of the Dirichlet problems Luh = f in Ωh, uh = 0 on ∂Ωh, extended to 0 in Ω\Ωh, converges to the solution of the “relaxed Dirichlet problem” Lu + μu = f in Ω, u = 0 on ∂Ω.


2016 ◽  
Vol 133 ◽  
pp. 250-274 ◽  
Author(s):  
Carmen Calvo-Jurado ◽  
Juan Casado-Díaz ◽  
Manuel Luna-Laynez

Sign in / Sign up

Export Citation Format

Share Document