A consideration of the structural design of a large-scale floating structure

1996 ◽  
Vol 1 (5) ◽  
pp. 255-267 ◽  
Author(s):  
Hideyuki Suzuki ◽  
Koichiro Yoshida ◽  
Kazuhiro Iijima
Author(s):  
Jan M. Kubiczek ◽  
Boyuan Liang ◽  
Lars Molter ◽  
Sören Ehlers

Collisions and grounding accidents of ships, but also the failure of the hull-integrity, can lead to oil leakage. Examples are the Rena in 2011, the Hebei Spirit in 2007 and the much known accident of the Prestige in 2002. Consequently research regarding the enhancement of the structural design to increase the safety-level of ships in case of accidents is important. In this paper the use of a rubber bag as a second barrier is presented as an alternative concept to prevent oil leakage in case of accidents. The influence of the rubber bag is investigated using the example of a ship collision. A simplified tanker side structure as well as a box shaped rubber bag are analyzed with the finite element method. The material model for the rubber bag is calibrated with tensile tests to obtain the required material parameters. The reaction forces and the associated penetration depth are analyzed. The comparison is done between the structure with and without the rubber bag. For the latter, the general behavior is compared with large-scale experimental results. Furthermore an additional increase of the survivability of the ship due to the rubber bag without changing the common structural design is discussed.


Author(s):  
Masaru Kokonno ◽  
Tatsuhiko Maeda ◽  
Keita Tahara ◽  
Marina Kouda ◽  
Yoshiaki Sawai ◽  
...  

<p>For large‐scale complex facilities, the authors designed seismic isolation structures which were ensured the highest‐level safety in a rational and economic way.</p><p>We split the building into two first, and then planned the buildings so that their spans and story heights might be optimum according to their uses, and performed the structural design of each building in pursuit of rationality and economic efficiency as well as safety. Finally, the buildings were integrated into one by connecting the two seismic isolation buildings with special expansion joint which was developed for these buildings.</p><p>Additionally, we considered long‐period earthquakes and strong inland earthquakes that were larger than the reference earthquake of the Japanese Building Codes to ensure highest‐level aseismic performance.</p>


Author(s):  
Hiroaki Eto ◽  
Chiaki Sato ◽  
Koichi Masuda ◽  
Tomoki Ikoma ◽  
Tomoyuki Kishida ◽  
...  

This paper proposes a large-scale floating coal stockyard (LFCS) and discusses its elastic behavior. Indonesia has recently become the main country supplying coal in the Asia-Pacific region. However, there is concern that export to Japan will decrease as coal demand increases. Therefore, the trend of coal transport in Indonesia is a very important matter in ensuring the continued stable import of coal to Japan. It is difficult for bulk carriers to traverse the shallow terrain of the seabed of the Markham River in East Kalimantan to reach coastal areas. Additionally, an LFCS can be operated as a relay base for barges, and large coal carriers have been proposed for use in offshore areas. The LFCS is capable of loading, storing, and offloading coal. Installing an LFCS offshore Kalimantan is expected to improve coal transport productivity in the region. Under such circumstances, the design plan proposed in this paper can simultaneously perform independent loading and unloading without interference. The partial mass distribution and local rigidity of the LFCS varies depending on the coal loading conditions. In addition, because the structure has a planar shape, the response of the LFCS showed elastic behavior. Design example of such a huge floating structure with the great difference of the displacement is unparalleled, it is very important to clarify a design fundamental subject. The objectives of this study are to provide a preliminary LFCS design and investigate the impact of varying the mass distribution and local rigidity on not only the distribution of the distortion and internal stress but also on the dynamic hydroelastic motion of the LFCS when it is impacted by waves. Therefore, the wave response of the LFCS was analyzed under different loading conditions.


2014 ◽  
Vol 602-605 ◽  
pp. 122-130
Author(s):  
Rui Wang ◽  
Yue Ying Ren ◽  
Xin Shuai Huang

The traditional large-scale marine propeller processing equipments have such disadvantages as single-surface machining, propeller blade vibration, poor stiffness, repeated clamping and long processing time. The method of double-cutter & double-surface symmetrical machining is proposed for large-scale marine propeller based on the parallel-serial mechanism. The processing method can overcome proposed disadvantages, and improve machining efficiency and accuracy. The structural design of the processing equipment is introduced and the coupling kinematics parameters of the parallel spindle platform are analyzed. The inverse kinematics solution and improved forward kinematics solution are discussed in detail. And the forward kinematics solution can solve a troublesome problem about the selection of good initial parameters. A simplified prototype is built to verify the solution method which could be used in the future actual application as a foundation.


Sign in / Sign up

Export Citation Format

Share Document