hydroelastic response
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 34)

H-INDEX

18
(FIVE YEARS 4)

2021 ◽  
Vol 2141 (1) ◽  
pp. 012002
Author(s):  
Xuhui Deng ◽  
Liang Ding ◽  
Liuyang Meng

Abstract Accurate prediction of hydroelastic response in ocean waves is of great significance to the structural design and reliability design of floating structures. In this paper, based on the potential flow theory, a large floating structure is simplified as a thin-plate material, and the hydrodynamic characteristics of the structure are calculated by using the modal expansion method and the boundary element method. The correctness of the theory and calculation is verified by comparing the experimental and numerical results. Further, the wave properties and structural materials characterization were changed, this paper calculates the stress and deflection of the structure under wave action, and analyzes the effects of hydroelastic response on the safety of the structure.


2021 ◽  
Vol 9 (9) ◽  
pp. 941
Author(s):  
Sarat Chandra Mohapatra ◽  
C. Guedes Soares

A boundary integral equation method (BIEM) model for the problem of surface wave interaction with a moored finite floating flexible plate is presented. The BIEM solution is obtained by employing the free surface Greens function and Green’s theorem, and the expressions for the plate deflection, reflection, and transmission coefficients are derived from the integro-differential equation. Furthermore, the shallow water approximation model and its solution is obtained based on the matching technique in a direct manner. The accuracy of the present BIEM code is checked by comparing the results of deflection amplitude, reflection, and transmission coefficients with existing published results and experimental datasets as well as the shallow water approximation model. The hydroelastic response of the moored floating flexible plate is studied by analyzing the effects of the mooring stiffness, incidence angle, and flexural rigidity on the deflection amplitude, plate deformations, reflection, and transmission coefficients. The present analysis may be helpful in understanding the different physical parameters to model a wave energy conversion device with mooring systems over BIEM formulations.


Wave Motion ◽  
2021 ◽  
Vol 104 ◽  
pp. 102749
Author(s):  
S.A. Selvan ◽  
S. Ghosh ◽  
H. Behera ◽  
M.H. Meylan

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1110
Author(s):  
Wei-Qin Liu ◽  
Luo-Nan Xiong ◽  
Guo-Wei Zhang ◽  
Meng Yang ◽  
Wei-Guo Wu ◽  
...  

The numerical hydroelastic method is used to study the structural response of a hexagon enclosed platform (HEP) of flexible module rigid connector (FMRC) structure that can provide life accommodation, ship berthing and marine supply for ships sailing in the deep ocean. Six trapezoidal floating structures constitute the HEP structure so that it is a symmetrical very large floating structure (VLFS). The HEP has the characteristics of large area and small depth, so its hydroelastic response is significant. Therefore, this paper studies the structural responses of a hexagon enclosed platform of FMRC structure in waves by means of a 3D potential-flow hydroelastic method based on modal superposition. Numerical models, including the hydrodynamic model, wet surface model and finite element method (FEM) model, are established, a rigid connection is simulated by many-point-contraction (MPC) and the number of wave cases is determined. The load and structural response of HEP are obtained and analyzed in all wave cases, and frequency-domain hydroelastic calculation and time-domain hydroelastic calculation are carried out. After obtaining a number of response amplitude operators (RAOs) for stress and time-domain stress histories, the mechanism of the HEP structure is compared and analyzed. This study is used to guide engineering design for enclosed-type ocean platforms.


2021 ◽  
Vol 9 (5) ◽  
pp. 511
Author(s):  
Zhe Sun ◽  
Guang-Jun Liu ◽  
Li Zou ◽  
Hao Zheng ◽  
K. Djidjeli

With the increase of ship size, the stiffness of the hull structure becomes smaller. This means that the frequency of wave excitation tends to be closer to the natural frequency of the hull vibration, which in turn makes the hydroelastic responses more significant. An accurate assessment of the wave loads and motion responses of hulls is the key to ship design and safety assessment. In this paper, the coupled CFD (Computational Fluid Dynamics)-FEM (Finite Element Method) method is used to investigate the non-linear hydroelasticity effect of a 6750-TEU (Twenty-foot Equivalent Unit) container ship. First, by comparing the heave, pitch, and vertical bending moment at midship section (VBM4) against experimental results reported in the literature, the validity of the numerical method in this paper is illustrated. Secondly, the ship responses under different wave length–ship length ratio, wave frequency-structure natural frequency, wave steepness, and ship speeds are studied. It is found that the wave length–ship length ratio has a more important influence on the hydroelastic response than that from wave frequency-structure natural frequency ratio, and the effect of wave non-linearity will behave differently under different wave length–ship length ratio. The increase of rigid body motion caused by forward speed will not correspondingly increase the non-linearity of the hydroelastic response.


2021 ◽  
Vol 33 (3) ◽  
pp. 037109
Author(s):  
Y. Z. Xue ◽  
L. D. Zeng ◽  
B. Y. Ni ◽  
A. A. Korobkin ◽  
T. I. Khabakhpasheva

Sign in / Sign up

Export Citation Format

Share Document