Model of accumulation of radionuclides in boiler water of steam generators in nuclear plants with VVÉR-440 and -1000 reactors

Atomic Energy ◽  
1994 ◽  
Vol 77 (1) ◽  
pp. 549-553
Author(s):  
E. A. Ivanov ◽  
I. V. Pyrkov ◽  
L. P. Kham'yanov
1991 ◽  
Vol 113 (2) ◽  
pp. 257-267 ◽  
Author(s):  
M. K. Au-Yang ◽  
R. D. Blevins ◽  
T. M. Mulcahy

This paper presents guidelines for flow-induced vibration analysis of tubes and tube bundles such as those commonly encountered in steam generators, heat exchangers, condensers and nuclear fuel bundles. It was proposed as a nonmandatory code to be included in Section III Appendix N (N-1300 series) of the American Society of Mechanical Engineers (ASME) Boiler Code. In preparing this code, the authors tried to limit themselves to the better-defined flow excitation mechanisms—vortex-induced vibration, fluid-elastic instability and turbulence-induced vibration—and include only the more-established methods. References are, however, given for other methods whenever justified. This guideline covers only design analysis. A companion guideline on the testing and data analysis of heat exchanger tube banks was proposed as part of the ASME Code on Operations and Maintenance of Nuclear Plants. The latter is not included in this paper.


2022 ◽  
pp. 1-2
Author(s):  

This document has been prepared by the Water Technology Subcommittee of the ASME Research and Technology Committee on Steam and Water in Thermal Systems as a consensus of proper current operating practices for the control of feedwater and boiler water chemistry in the operation of industrial and institutional, high duty, primary fuel fired boilers. These practices are aimed at minimizing corrosion, deposition, cleaning requirements, and unscheduled outages in the steam generators and associated condensate, feedwater and steam systems for boilers, and steam system components which are currently available. This publication is an expansion and revision of the operating practice consensus documents previously issued by the Committee [1-3]. The tabulated values herein update and replace the ones previously published. Titles have been edited and clarified. The text has been reordered and modified where necessary. THE TEXT IS OF PRIME IMPORTANCE AND SHOULD BE CONSIDERED FULLY BEFORE USING THE TABULATED VALUES. One Appendix has been added to provide additional guidance.


Author(s):  
Brad Buecker

New power generation in the U.S. is being dominated by installation of combined-cycle power plants, where a significant portion of the power is produced from steam turbines supplied by heat recovery steam generators (HRSG). Proper chemistry control and monitoring of HRSG feedwater, boiler water, and steam are essential for high reliability and availability of these units. However, many plants have minimal staff, most if not all of whom have no formal chemistry training and who may not fully understand the importance of water/steam chemistry and monitoring techniques. This paper provides an outline of the most important chemistry control methods and also examines the phenomenon of flow-accelerated corrosion (FAC). FAC is the leading cause of corrosion in HRSGs,[1] and is often the result of the outdated belief that oxygen scavengers are a requirement for feedwater treatment. Since 1986, FAC-induced failures at several coal-fired power plants have killed or injured a number of U.S. utility workers.


Sign in / Sign up

Export Citation Format

Share Document