On the existence of periodic solutions of a certain non-autonomous differential equation

1970 ◽  
Vol 85 (1) ◽  
pp. 235-240 ◽  
Author(s):  
Rolf Reissig
2018 ◽  
Vol 24 (2) ◽  
pp. 127-137
Author(s):  
Jaume Llibre ◽  
Ammar Makhlouf

Abstract We provide sufficient conditions for the existence of periodic solutions of the second-order differential equation with variable potentials {-(px^{\prime})^{\prime}(t)-r(t)p(t)x^{\prime}(t)+q(t)x(t)=f(t,x(t))} , where the functions {p(t)>0} , {q(t)} , {r(t)} and {f(t,x)} are {\mathcal{C}^{2}} and T-periodic in the variable t.


2003 ◽  
Vol 13 (06) ◽  
pp. 807-841 ◽  
Author(s):  
R. Ouifki ◽  
M. L. Hbid

The purpose of the paper is to prove the existence of periodic solutions for a functional differential equation with state-dependent delay, of the type [Formula: see text] Transforming this equation into a perturbed constant delay equation and using the Hopf bifurcation result and the Poincaré procedure for this last equation, we prove the existence of a branch of periodic solutions for the state-dependent delay equation, bifurcating from r ≡ 0.


1986 ◽  
Vol 102 (3-4) ◽  
pp. 259-262 ◽  
Author(s):  
J. G. Dos Reis ◽  
R. L. S. Baroni

SynopsisLet Ca be the set of all the continuous functions from the interval [−r, 0] on the sphere of radius a, on the plane. We prove, under certains conditions, that a retarded autonomous differential equation that leaves Ca invariant has a non-constant periodic solution.


2012 ◽  
Vol 2012 ◽  
pp. 1-26
Author(s):  
Ni Hua ◽  
Tian Li-Xin

This paper deals with a first-order differential equation with a polynomial nonlinear term. The integrability and existence of periodic solutions of the equation are obtained, and the stability of periodic solutions of the equation is derived.


1988 ◽  
Vol 110 (3-4) ◽  
pp. 183-198 ◽  
Author(s):  
R. Iannacci ◽  
M.N. Nkashama ◽  
P. Omari ◽  
F. Zanolin

SynopsisThis paper is devoted to the existence of periodic solutions for the scalar forced Lienard differential equationThe key assumptions relate the asymptotic behaviour as x →± ∞of g(t; x)/x to the “critical values” of the positively 1-homogeneous problemNo condition on f, except continuity, is assumed. Our approach is based on Leray–Schauder degree techniques and a priori estimates.


Author(s):  
J. O. C. Ezeilo

In this paper we shall be concerned with the differential equationin which a and b are constants, p(t) is a continuous periodic function of t with a least period ω, and dots indicate differentiation with respect to t. The function h(x) is assumed continuous for all x considered, so that solutions of (1) exist satisfying any assigned initial conditions. In an earlier paper (2) explicit hypotheses on (1) were established, in the two distinct cases:under which every solution x(t) of (1) satisfieswhere t0 depends on the particular x chosen, and D is a constant depending only on a, b, h and p. These hypotheses are, in the case (2),or, in the case (3),In what follows here we shall refer to (2) and (H1) collectively as the (boundedness) hypotheses (BH1), and to (3) and (H2) as the hypotheses (BH2). Our object is to examine whether periodic solutions of (1) exist under the hypotheses (BH1), (BH2).


Sign in / Sign up

Export Citation Format

Share Document