Germination of surface-disinfected resting spores of Plasmodiophora brassicae and their root hair infection in turnip hairy roots

Mycoscience ◽  
2000 ◽  
Vol 41 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Takahiro Asano ◽  
Koji Kageyama ◽  
Mitsuro Hyakumachi

Resting spore germination and the root hair stages of the life history of Plasmodiophora brassicae were studied in stained preparations of infected Brassica rapa seedling roots. Naked protoplasts, usually possessing two unequal flagella, were released from resting spores through a small circular pore. They penetrated the root hairs of B. rapa and there developed into plasmodia which, after becoming multinucleate, cleaved to form zoosporangia con­taining incipient zoospores. Biflagellate zoospores were released from root hair zoosporangia and fused in pairs, although karyogamy did not occur. The resulting binucleate zoospores infected the cortical dells of B. rapa to form binucleate plasmodia, the earliest stages of the secondary phase of the life history. These findings are discussed in relation to previous studies on the life history of P. brassicae in Brassica plants and in Brassica tissue cultures, and a new complete life history, including nuclear fusion in the secondary plasmodium, is suggested for the organism.


2014 ◽  
Vol 104 (10) ◽  
pp. 1078-1087 ◽  
Author(s):  
Mary Ruth McDonald ◽  
Kalpana Sharma ◽  
Bruce D. Gossen ◽  
Abhinandan Deora ◽  
Jie Feng ◽  
...  

The disease cycle of Plasmodiophora brassicae consists of a primary phase in root hairs followed by a secondary phase in the root cortex and adjacent tissues. However, the role of root hair infection in subsequent cortical infection and development of P. brassicae is not well understood. To examine the role of the primary and secondary stages separately, inoculation studies with resting spores (source of primary zoospores) and secondary zoospores of a virulent and avirulent pathotype were conducted on canola (Brassica napus). The size of secondary zoospores and number of nuclei were also examined. The zoospores were larger (≈9.6 to 14.4 μm) than in previous reports and all were uninucleate. Inoculation with secondary zoospores alone produced both primary and secondary infection, even with the avirulent pathotype. No symptoms developed from inoculation with avirulent primary zoospores but tiny, bead-shaped clubs developed from inoculation with avirulent secondary zoospores. Inoculation with virulent secondary zoospores alone resulted in lower disease severity than inoculation with virulent resting spores alone. The results indicate that recognition of infection by the host and initiation of a response (induction or suppression of resistance) occurs during primary infection, although recognition can also occur during cortical infection and development.


2011 ◽  
Vol 60 (5) ◽  
pp. 820-829 ◽  
Author(s):  
S. F. Hwang ◽  
H. U. Ahmed ◽  
Q. Zhou ◽  
S. E. Strelkov ◽  
B. D. Gossen ◽  
...  

1999 ◽  
Vol 89 (4) ◽  
pp. 314-319 ◽  
Author(s):  
T. Asano ◽  
K. Kageyama ◽  
M. Hyakumachi

Resting spores of Plasmodiophora brassicae were surface-disinfested by treatment with 2% chloramine-T for 20 min and then with an antibiotic solution (1,000 ppm of colistin sulfate, 1,000 ppm of vancomycin hydrochloride, and 6,000 ppm of cefotaxime sodium) for 1 day. The disinfested resting spores were used to inoculate hairy roots of cabbage (Brassica oleracea var. capitata cv. Fuji Wase), Chinese cabbage (B. pekinensis cv. Musou Hakusai), turnip (B. rapa var. rapifera cv. Wase Okabu), and rape (B. napus line Dc 119). Differences among hosts in susceptibility to clubroot in hairy roots were evident. Chinese cabbage and turnip hairy roots supported the highest percentages of root hair infection (53.3 to 80%) and the greatest production of zoosporangial groups (8.5 to 32.5 per root). Moreover, gall formation was observed only on Chinese cabbage and turnip hairy roots. The morphology of zoo-sporangia, plasmodia, and resting spores in diseased hairy roots was found to be identical to that in infected intact plants by both light and scanning electron microscopy. Pathogenicity tests confirmed the infectivity of resting spores produced in hairy roots. Thus, the hairy root culture technique should prove useful as a dual culture system for P. brassicae.


2005 ◽  
Vol 113 (3) ◽  
pp. 275-281 ◽  
Author(s):  
Hanna Friberg ◽  
Jan Lagerlöf ◽  
Birgitta Rämert

Nature Plants ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 73-86
Author(s):  
Bao Zhang ◽  
Mengdi Wang ◽  
Yifang Sun ◽  
Peng Zhao ◽  
Chang Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document