scholarly journals The Relation of Spore Density of Plasmodiophora brassicae Wor. to the Root Hair Infection and Club Formation in Chinese Cabbage

1978 ◽  
Vol 44 (4) ◽  
pp. 432-439 ◽  
Author(s):  
Takashi NAIKI ◽  
Kohji KAGEYAMA ◽  
Hatiro IKEGAMI
2011 ◽  
Vol 60 (5) ◽  
pp. 820-829 ◽  
Author(s):  
S. F. Hwang ◽  
H. U. Ahmed ◽  
Q. Zhou ◽  
S. E. Strelkov ◽  
B. D. Gossen ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yuxiang Yuan ◽  
Liuyue Qin ◽  
Henan Su ◽  
Shuangjuan Yang ◽  
Xiaochun Wei ◽  
...  

Clubroot, caused by the soil-borne protist Plasmodiophora brassicae, is one of the most destructive diseases of Chinese cabbage worldwide. However, the clubroot resistance mechanisms remain unclear. In this study, in both clubroot-resistant (DH40R) and clubroot-susceptible (DH199S) Chinese cabbage lines, the primary (root hair infection) and secondary (cortical infection) infection stages started 2 and 5 days after inoculation (dai), respectively. With the extension of the infection time, cortical infection was blocked and complete P. brassica resistance was observed in DH40R, while disease scales of 1, 2, and 3 were observed at 8, 13, and 22 dai in DH199S. Transcriptome analysis at 0, 2, 5, 8, 13, and 22 dai identified 5,750 relative DEGs (rDEGs) between DH40R and DH199S. The results indicated that genes associated with auxin, PR, disease resistance proteins, oxidative stress, and WRKY and MYB transcription factors were involved in clubroot resistance regulation. In addition, weighted gene coexpression network analysis (WGCNA) identified three of the modules whose functions were highly associated with clubroot-resistant, including ten hub genes related to clubroot resistance (ARF2, EDR1, LOX4, NHL3, NHL13, NAC29, two AOP1, EARLI 1, and POD56). These results provide valuable information for better understanding the molecular regulatory mechanism of Chinese cabbage clubroot resistance.


2019 ◽  
Vol 128 ◽  
pp. 56-63 ◽  
Author(s):  
Pengjie He ◽  
Wenyan Cui ◽  
Shahzad Munir ◽  
Pengfei He ◽  
Xingyu Li ◽  
...  

2018 ◽  
Vol 15 (4) ◽  
pp. 675-683
Author(s):  
Le Thi Anh Tu ◽  
Pham Thi Le Ha

Plasmodiophora brassicae- the casual cause of clubroot disease of plants belonging to the family Brassicaceae. This soil-borne fungus infects plants through root hairs. Diseased roots become swollen and deformed. Thus, it’s difficult for plants to absorb water and nutrients. There are some methods used to control this disease including soil fumigation, soil pH control, fungicides, surfactants applications, calcium supplementation, but the results are still restricted. Plasmodiophora brassicae was isolated, identified and artificial inoculated on the Chinese cabbage. The rate of root hair infection and gall formation depended on the spore density and growth media. The increase of the pathogen density lead to the increase of disease symptoms. Silver nanoparticles (SNPs) are widely used as an agent for antifungal treatment. The antimicrobial activity of the nanoparticles varies on the size, shape, and the function of the surface area. The γ - irradiation method to synthesize SNPs is known as a method that can be controlled the out coming sizes, shapes and size distribution of particles. The average diameter of silver nanoparticles in this research was 9.5nm. In the liquid culture and soil, SNPs exhibited a controlling effect on P. brassicae. The fungicide activity depended on the SNP concentrations and the medium; no disease symptoms were found at the SNP concentrations of 1.06 ppm in the liquid culture, and 10 and 20 ppm in soil. Results of the study also showed that the biomass and height of infected plants were much lower than those of the healthy plants. Comparing to the plants that were grown in the sterilized soil, there was not significant difference between the biomass and the height of plants exposed to pathogen and treated with SNPs.


Sign in / Sign up

Export Citation Format

Share Document