seedling roots
Recently Published Documents


TOTAL DOCUMENTS

484
(FIVE YEARS 71)

H-INDEX

43
(FIVE YEARS 5)

2022 ◽  
Vol 12 ◽  
Author(s):  
Dongqing Yang ◽  
Jihao Zhao ◽  
Chen Bi ◽  
Liuyin Li ◽  
Zhenlin Wang

Wheat growth and nitrogen (N) uptake gradually decrease in response to high NH4+/NO3– ratio. However, the mechanisms underlying the response of wheat seedling roots to changes in NH4+/NO3– ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH4+/NO3– ratios (Na: 100/0; Nr1: 75/25, Nr2: 50/50, Nr3: 25/75, and Nn: 0/100). High NH4+/NO3– ratio significantly reduced leaf relative chlorophyll content, Fv/Fm, and ΦII values. Both total root length and specific root length decreased with increasing NH4+/NO3– ratios. Moreover, the rise in NH4+/NO3– ratio significantly promoted O2– production. Furthermore, transcriptome sequencing and tandem mass tag-based quantitative proteome analyses identified 14,376 differentially expressed genes (DEGs) and 1,819 differentially expressed proteins (DEPs). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that glutathione metabolism and phenylpropanoid biosynthesis were the main two shared enriched pathways across ratio comparisons. Upregulated DEGs and DEPs involving glutathione S-transferases may contribute to the prevention of oxidative stress. An increment in the NH4+/NO3– ratio induced the expression of genes and proteins involved in lignin biosynthesis, which increased root lignin content. Additionally, phylogenetic tree analysis showed that both A0A3B6NPP6 and A0A3B6LM09 belong to the cinnamyl-alcohol dehydrogenase subfamily. Fifteen downregulated DEGs were identified as high-affinity nitrate transporters or nitrate transporters. Upregulated TraesCS3D02G344800 and TraesCS3A02G350800 were involved in ammonium transport. Downregulated A0A3B6Q9B3 is involved in nitrate transport, whereas A0A3B6PQS3 is a ferredoxin-nitrite reductase. This may explain why an increase in the NH4+/NO3– ratio significantly reduced root NO3–-N content but increased NH4+-N content. Overall, these results demonstrated that increasing the NH4+/NO3– ratio at the seedling stage induced the accumulation of reactive oxygen species, which in turn enhanced root glutathione metabolism and lignification, thereby resulting in increased root oxidative tolerance at the cost of reducing nitrate transport and utilization, which reduced leaf photosynthetic capacity and, ultimately, plant biomass accumulation.


Seeds ◽  
2022 ◽  
Vol 1 (1) ◽  
pp. 28-35
Author(s):  
Gregorio Barba-Espín ◽  
José A. Hernández ◽  
Cristina Martínez-Andújar ◽  
Pedro Díaz-Vivancos

(1) Background: Peach cv. GF305 is commonly used in breeding programs due to its susceptibility to numerous viruses. In this study, we aimed to achieve a methodology for rapid and uniform seed germination of peach cv. GF305 in order to obtain vigorous seedlings; (2) Methods: A combination of cold stratification and H2O2 imbibition was tested on peach seeds with or without endocarp. In addition, the levels of non-enzymatic antioxidants ascorbate and glutathione as well as the hormone profile in seedling roots and shoots were determined; (3) Results: We found that H2O2 imbibition of peach seeds without endocarp after 8 weeks of stratification increased germination rate and resulted in seedlings displaying good vegetative growth. The H2O2 imbibition also affected the levels of ascorbate, glutathione, and the phytohormones abscisic acid and jasmonic acid in peach seedlings; (4) Conclusions: Although stratification periods of 12 weeks have been previously established as being appropriate for this cultivar, we have been able to reduce this stratification time by up to 4 weeks, which may have practical implication in peach nurseries.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 90
Author(s):  
Minsol Choi ◽  
Ramaraj Sathasivam ◽  
Bao Van Nguyen ◽  
Nam Il Park ◽  
Sun-Hee Woo ◽  
...  

Tartary buckwheat (Fagopyrum tataricum) is an important crop that belongs to the Polygonaceae family, whose roots have received considerable attention due to the presence of compounds with high nutritional and medicinal value. In this study, we aimed to develop an efficient protocol for the culture of adventitious (ARs) and hairy (HRs) roots on a half-strength Schenk and Hildebrandt (SH) medium containing different concentrations of the auxins, α-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA), and indole-3-acetic acid (IAA). The highest percentage of root induction (91.67%) was achieved with 0.5 mg/L IAA, whereas the greatest number of roots was found in 1 mg/L IAA. In contrast, 0.1 mg/L IBA returned the longest roots. As expected, HRs were obtained from in vitro leaf explants infected with Agrobacterium rhizogenes R1000. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of 11 phenolic pathway genes revealed that five genes (FtPAL, FtC3H, FtHQT, FtCHS, and FtANS) were highly expressed in HRs, whereas only four (FtC4H, FtFLS2, FtDFR, and FtANR), and three (Ft4CL, FtCHI, and FtF3H) were recognized in the ARs and seedling roots (SRs), respectively. HPLC analysis of phenolic compounds in different root cultures showed that the majority of the phenolic compounds (both individual and total) were significantly accumulated in the HRs. Principal component analysis (PCA) identified differences among the three root types, whereby HRs were separated from ARs and SRs based on the amount of phenolic compounds present. Analysis of the metabolic pathway revealed that among the identified metabolites, the 3, 2, and 1 pathways were associated with flavonoid, flavone and flavonol, and phenylpropanoid biosynthesis, respectively. Hierarchical clustering analysis and the heat map showed that the different root cultures presented unique metabolites.


2021 ◽  
Vol 12 ◽  
Author(s):  
José de Jesús González-Sánchez ◽  
Itzel Santiago-Sandoval ◽  
José Antonio Lara-González ◽  
Joel Colchado-López ◽  
Cristian R. Cervantes ◽  
...  

Genetic mechanisms controlling root development are well-understood in plant model species, and emerging frontier research is currently dissecting how some of these mechanisms control root development in cacti. Here we show the patterns of root architecture development in a gradient of divergent lineages, from populations to species in Mammillaria. First, we show the patterns of variation in natural variants of the species Mammillaria haageana. Then we compare this variation to closely related species within the Series Supertexta in Mammillaria (diverging for the last 2.1 million years) in which M. haageana is inserted. Finally, we compared these patterns of variation to what is found in a set of Mammillaria species belonging to different Series (diverging for the last 8 million years). When plants were grown in controlled environments, we found that the variation in root architecture observed at the intra-specific level, partially recapitulates the variation observed at the inter-specific level. These phenotypic outcomes at different evolutionary time-scales can be interpreted as macroevolution being the cumulative outcome of microevolutionary phenotypic divergence, such as the one observed in Mammillaria accessions and species.


2021 ◽  
Author(s):  
Lolita Melian ◽  
◽  
Liudmila Corlateanu ◽  
Victoria Mihailă ◽  
Doina Cutitaru ◽  
...  

The test of accelerated aging of seeds (AAS) was applied on 7 genotypes of durum wheat, and the morphophysiological parameters of seeds and seedlings, such as dynamics of seed germination, length of seedling roots, fresh and dry biomass of seedlings, were investigated. The genotypic features of collection samples of durum wheat were identified after exposure to stress factors (high temperature and humidity). Such a grouping of genotypes according to their potential ability to preserve the viability of seeds is an important complex characteristic of collection samples when they are placed for long-term storage in a plant gene bank.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0248796
Author(s):  
Gen Fang ◽  
Jing Yang ◽  
Tong Sun ◽  
Xiaoxin Wang ◽  
Yangsheng Li

Ammonium toxicity in plants is considered a global phenomenon, but the primary mechanisms remain poorly characterized. Here, we show that although the addition of potassium or nitrate partially alleviated the inhibition of rice seedling root growth caused by ammonium toxicity, the combination of potassium and nitrate clearly improved the alleviation, probably via some synergistic mechanisms. The combined treatment with potassium and nitrate led to significantly improved alleviation effects on root biomass, root length, and embryonic crown root number. The aberrant cell morphology and the rhizosphere acidification level caused by ammonium toxicity, recovered only by the combined treatment. RNA sequencing analysis and weighted gene correlation network analysis (WGCNA) revealed that the transcriptional response generated from the combined treatment involved cellulose synthesis, auxin, and gibberellin metabolism. Our results point out that potassium and nitrate combined treatment effectively promotes cell wall formation in rice, and thus, effectively alleviates ammonium toxicity.


2021 ◽  
Author(s):  
Kevin F. Kreis ◽  
Sangjin Ryu

Abstract Plants are crucial to our lives because they provide us with building materials, oxygen, and food. A season’s crop yield can be significantly affected by local environmental factors. In particular, improving fundamental understanding of plant root interactions with their local soil environment, or rhizosphere, will help improve crop yield. Studying such interactions is challenging because roots are underground, making it difficult to observe interactions and to manipulate the local soil environment. The goal of this study was to develop an automated mini-channel platform to investigate how plant roots respond to changes in their environment using corn as a model plant. Considering the size of corn seedling roots, mini-channel devices were fabricated in soft lithography using master molds produced with a 3D printer and polydimethylsiloxane (PDMS). Our use of a 3D printer instead of photolithography allowed for a broader range of PDMS mold designs, such as including embedded rubber gaskets built into the mold. Then, corn seedlings were grown inside the transparent mini-channel devices, and they were found to consume an observable amount of nitrate over time. Image processing was employed to measure the contour length of the roots for quantitative characterization of root growth. Then, an automated platform was developed to measure the growth rate of the corn seedling roots and the consumed nitrate over time. The automated platform maintained the level of growth medium in the channel device, and was equipped with a digital camera to image the root growing in the channel, electrochemical sensors to measure changes in nitrate concentration in the channel, and sensors to measure temperature and humidity. Therefore, the platform could automatically measure root growth while simultaneously measuring root environment. The platform’s adaptable design, simple fabrication, and low cost make it simple to replicate and use to study different plants and environmental stimuli.


2021 ◽  
Author(s):  
Yi Dai ◽  
Muhammad Adnan Tabassum ◽  
Lin Chen ◽  
Zhenzhi Pan ◽  
Li Song

2021 ◽  
Vol 12 (2) ◽  
pp. 260-264
Author(s):  
Y. V. Lykholat ◽  
N. O. Khromykh ◽  
O. O. Didur ◽  
O. O. Gaponov ◽  
M. M. Nazarenko ◽  
...  

Effective management of the course of crop vegetation and adaptation to biotic and abiotic stresses is a prerequisite for stable grain production and requires replenishment of the arsenal of plant growth regulators. The effect of novel synthesized cage amides on maize seedlings morphogenesis has been tested. Seeds of a mid-early maize hybrid 'DN Galatea' after the pre-sowing treatment with 0.01% solutions of test compounds were grown in distilled water. The roots and shoots sections of 10-day-old maize seedlings were stained with phloroglucinol solution to reveal the lignin-containing anatomical structures. The effects of nine different test compounds, exceeding the well-known effects of the phytohormone auxin, promoted the maize seedlings’ linear growth, increased wet weight of roots and shoots, and dry biomass accumulation both in seedlings roots and shoots. Several test compounds activated the dry weight accumulation process without significantly affecting the root and shoot length. In the maize seedlings’ roots, an increase in the diameter and number of the xylem vessels was found, as well as an increase in the lignin-containing layer thickness of the endoderm cells in the root cortex. In the maize seedlings’ shoots, the test compounds caused an increase in the thickness of the lignin-containing outer layer of the seedlings’ first leaf. In general, the test compounds’ effect on seedling roots can potentially enhance root formation; increase efficiency of the roots water-conducting system and the tissues’ strength, thus reducing the likelihood of root lodging in maize plants. The effects of the test compounds revealed in the seedlings’ shoots reflect the activation of the shoots’ structure formation and may have a positive value for enhancing the strength of the plant stems and counteracting the stem lodging of the maize plants.


Sign in / Sign up

Export Citation Format

Share Document