resting spores
Recently Published Documents


TOTAL DOCUMENTS

281
(FIVE YEARS 26)

H-INDEX

30
(FIVE YEARS 2)

2022 ◽  
Vol 12 ◽  
Author(s):  
Yao Wang ◽  
Birger Koopmann ◽  
Andreas von Tiedemann

Clubroot caused by the obligate biotrophic parasite Plasmodiophora brassicae is a destructive soil borne disease of cruciferous crops. Resting spores of P. brassicae can survive in the soil for a long period without hosts or external stimulants. The viability and germination rate of resting spores are crucial factors of the inoculum potential in the field. The accurate assessment of viability and germination rate is the foundation to evaluate the effect of control methods. In this study, we evaluated several methods for the assessment of viability and germination rate of P. brassicae resting spores. Dual staining with calcofluor white-propidium iodide (CFW-PI) or single stain with Evans blue showed reliable accuracy in estimating viability. CFW-PI was capable of reliably determining the viability within 10 min, while Evans blue required overnight incubation to obtain accurate results. Due to DNA degradation of heat treatments, acetone was selected to evaluate the efficiency of propidium monoazide (PMA)–quantitative PCR (qPCR) used for the quantification of DNA from viable cells. The staining with 4,6-Diamidine-2-phenylindole dihydrochloride (DAPI) and the use of differential interference contrast microscopy were suitable for the determination of resting spore germination rates. The latter method also allowed recording individual germination states of spores. Alternatively, dual staining with CFW-Nile red was successfully used to assess the germination rate of resting spores with a lethal pre-treatment. This study evaluates and confirms the suitability of various microscopic and molecular genetic methods for the determination of viability and germination of P. brassicae resting spores. Such methods are required to study factors in the soil regulating survival, dormancy and germination of P. brassicae resting spores causing clubroot disease in Brassicaceae hosts and therefore are fundamental to develop novel strategies of control.


EPPO Bulletin ◽  
2021 ◽  
Author(s):  
Bart T. L. H. Vossenberg ◽  
Naomi te Braak ◽  
Tim Warbroek ◽  
Johan P. Meffert ◽  
Karin H. M. Rosendahl‐Peters ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Xinyu Yang ◽  
Lin Sun ◽  
Huiying Sun ◽  
Yingzhe Hong ◽  
Zihao Xia ◽  
...  

Clubroot caused by Plasmodiophora brassicae is a serious threat to cruciferous crops around the world. The resting spores of P. brassicae are primary source of infection and can survive in soil for many years. Detection of resting spores in soil is essential for forecasting clubroot prevalence. Detection of P. brassicae has been relying on plant bioassays or polymerase chain reaction (PCR)-based methods. The loop-mediated isothermal DNA amplification (LAMP) is a promising approach for microorganism detection with the advantage of high sensitivity, being accurate and convenient to visualize. In this study, we developed a LAMP assay for detection of P. brassicae in soil, roots and seeds. This method can detect P. brassicae at a minimal amount of 1 fg plasmid DNA or 10 resting spores in the soil. Compared to conventional PCR, the LAMP was more sensitive in detection P. brassicae at the lower levels in soil samples. In conclusion, we elaborated a sensitive, accurate and easy-to-use LAMP assay to detect P. brassicae, which will facilitate to plan sustainable clubroot management.


2021 ◽  
Author(s):  
Anushree Sanyal ◽  
Josefine Larsson ◽  
Falkje Wirdum ◽  
Thomas Andrén ◽  
Matthias Moros ◽  
...  
Keyword(s):  

2021 ◽  
Vol 8 (2) ◽  
pp. 36-48
Author(s):  
A. Zelya ◽  
L. Janse ◽  
J. Janse ◽  
S. Ghoghoberidze ◽  
G. Zelya ◽  
...  

Aim. To determine the occurrence and persistence of Synchytrium endobioticum, resting spore contamination in a small survey of (known infested) potato plots in Ukraine and Georgia; to compare the detection efficiency for resting spores (winter sporangia) of S. endobioticum using an extraction method, routinely applied in Ukraine, based on the use of sodium iodide (NaI) and an extraction method largely based on EPPO Standard PM 7/28(2) (2017), using kaolin and calcium chloride (CaCl2) for extraction. Methods. The examination of fields, aimed at detecting of S. endobioticum in 22 infested plots in Georgia, was conducted following the standard European Plant Protection Organisation (EPPO) phytosanitary procedure PM 3/59(3) (2017), and in Ukraine in 11 plots according to the Ukrainian Standard ‘Methodological recommendations on sampling during quarantine inspection and evaluation’ (Omeluta V P et al, 1996). Resting spores were extracted using kaolin and CaCl2 (following largely EPPO Standard PM 7/28(2) 2017), and floatation in a solution of NaI (Zelya et al, 2005), respectively. The content of soil organic matter (SOM), collected in potato wart infested plots in Ukraine and Georgia, was determined according to the ‘Method of laboratory determination of the content of organic matter’, largely following the method of Tyurin to determine total soil organic carbon (Jankauskas B et al, 2006). The persistence or decline of potato wart in infested plots was evaluated, based on our own observations and the data of the national phytosanitary services (https://dpss.gov.ua; http://agr.georgia.gov). The results of the study were subjected to statistical analysis, using Statistica 5 software. Results. It was found that under a low up to high level of organic matter in soil samples (2.0–2.7 and 3.1–3.9 %, respectively) and a moderate to high level of inoculum in soil (3–15 up to 41–65 resting spores/g soil, respectively) there were no significant differences in the efficiency of two extraction methods under consideration: the floatation in a solution of NaI and the application of kaolin and CaCl2. However, at a low number of resting spores present in soil (1–2 resting spores/g soil), the efficiency of the method using NaI decreased statistically significant by 20–30 % as opposed to the method using kaolin/CaCl2. A relatively high level of soil contamination with resting spores was found in 11 investigated plots of 4 Ukrainian regions: 41–46 resting spores/g soil in the Ivano-Frankivsk Region, 49 in the Lviv Region, 40–65 in the Zakarpattia and 52–65 Chernivtsi Regions. The majority of the 22 investigated Georgian plots showed a low inoculum level (1–7 resting spores/g soil) and only in one village their level amounted to 15 resting spores/g soil (Uchguli village, Mestia municipality). Conclusions. The method applying sodium iodide was found to be comparable to the method applying kaolin and CaCl2 under conditions of moderate to high inoculum levels (15–65 resting spores/g soil) but the latter method was more efficient under conditions of high content of organic matter and very low inoculum level (


Plant Disease ◽  
2021 ◽  
Author(s):  
Nazanin Zamani-Noor ◽  
Sinja Brand ◽  
Hans-Peter Soechting

A series of greenhouse experiments was conducted to evaluate the effect of Plasmodiophora brassicae virulence on clubroot development and propagation of resting spores in 86 plant species from 19 botanical families. Plants were artificially inoculated with two isolates of P. brassicae, which were either virulent on clubroot-resistant oilseed rape cv. Mendel (P1 (+)) or avirulent on this cultivar (P1). Clubroot severity and the number of resting spores inside the roots were assessed 35 days post inoculation. Typical clubroot symptoms were observed only in the Brassicaceae family. P1 (+)-inoculated species exhibited more severe symptoms (2 to 10–fold more severe), bigger galls (1.1 to 5.8 fold heavier) and higher number of resting spores than the P1-inoculated plants. Among all Brassica species, Bunias orientalis, Coronopus squamatus and Raphanus sativus were fully resistant against both isolates, while Camelina sativa, Capsella bursa-pastoris, Coincya momensis, Descurainia sophia, Diplotaxis muralis, Erucastrum gallicum, Neslia paniculata, Sinapis alba, S. arvensis, Sisymbrium altissimum, S. loeselii and Thlaspi arvense were highly susceptible. Conringia orientalis, Diplotaxis tenuifolia, Hirschfeldia incana, Iberis amara, Lepidium campestre and Neslia paniculata were completely or partially resistant to P1-isolate but highly susceptible to P1 (+). These results propose that the basis for resistance in these species may be similar to that found in some commercial cultivars, and that these species could contribute to the build-up of inoculum of virulent pathotypes. Furthermore, the pathogen DNA was detected in Alopecurus myosuroides, Phacelia tanacatifolia, Papaver rhoeas and Pisum sativum. It can concluded that the number and diversity of hosts for P. brassicae are greater than previously reported.


Plant Disease ◽  
2021 ◽  
Author(s):  
T. Blake Hill ◽  
Greg C Daniels ◽  
Jie Feng ◽  
Michael Wayne Harding

Biosafety practices, such as bioexclusion via sanitization, can prevent the spread of infectious soilborne threats such as the clubroot pathogen, Plasmodiophora brassicae. Twenty three chemical disinfectants were evaluated for efficacy against P. brassicae resting spores. Evans blue staining was used to directly measure the viability of P. brassicae resting spores after 20 min exposures to ten concentrations of each of the 23 chemical disinfectants. Only nine disinfectants were capable of greater than 95% inactivation, and only five were capable of inactivating >99% of resting spores. Bleach (sodium hypochlorite) and Spray Nine® were the most effective disinfectants for inactivation of clubroot resting spores. AES 2500, SaniDate® and ethanol also inactivated >99% of resting spores, but only at very high concentrations. A time course experiment showed that 10 to 12 min contact time was sufficient for ≥ 95% resting spore inactivation with Spray Nine® and sodium hypochlorite, but ≥ 30 min contact was required for other disinfectants evaluated. These results will assist in guiding management recommendations for sanitization aimed at bioexclusion and biocontainment of P. brassicae.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sadegh Balotf ◽  
Robert S. Tegg ◽  
David S. Nichols ◽  
Calum R. Wilson

For soilborne pathogens, germination of the resting or dormant propagule that enables persistence within the soil environment is a key point in pathogenesis. Spongospora subterranea is an obligate soilborne protozoan that infects the roots and tubers of potato causing root and powdery scab disease for which there are currently no effective controls. A better understanding of the molecular basis of resting spore germination of S. subterranea could be important for development of novel disease interventions. However, as an obligate biotroph and soil dwelling organism, the application of new omics techniques for the study of the pre-infection process in S. subterranea has been problematic. Here, RNA sequencing was used to analyse the reprogramming of S. subterranea resting spores during the transition to zoospores in an in-vitro model. More than 63 million mean high-quality reads per sample were generated from the resting and germinating spores. By using a combination of reference-based and de novo transcriptome assembly, 6,664 unigenes were identified. The identified unigenes were subsequently annotated based on known proteins using BLAST search. Of 5,448 annotated genes, 570 genes were identified to be differentially expressed during the germination of S. subterranea resting spores, with most of the significant genes belonging to transcription and translation, amino acids biosynthesis, transport, energy metabolic processes, fatty acid metabolism, stress response and DNA repair. The datasets generated in this study provide a basic knowledge of the physiological processes associated with spore germination and will facilitate functional predictions of novel genes in S. subterranea and other plasmodiophorids. We introduce several candidate genes related to the germination of an obligate biotrophic soilborne pathogen which could be applied to the development of antimicrobial agents for soil inoculum management.


Sign in / Sign up

Export Citation Format

Share Document