hairy roots
Recently Published Documents


TOTAL DOCUMENTS

1137
(FIVE YEARS 249)

H-INDEX

53
(FIVE YEARS 6)

2022 ◽  
Vol 147 ◽  
pp. 63-70
Author(s):  
Tatyana Novikova ◽  
Elena Ambros ◽  
Olga Kotsupiy ◽  
Tatyana Shaldaeva ◽  
Mariya Protsenko ◽  
...  
Keyword(s):  

Author(s):  
Narges Arkian Boroujeni ◽  
Somayeh Behjat Khatouni ◽  
Mohammad Javad Motamedi ◽  
Shaghayegh Afraz ◽  
Mahyat Jafari ◽  
...  

2022 ◽  
Author(s):  
Yingping Cao ◽  
Yue Xu ◽  
Yue Zhang ◽  
Heng Zhang ◽  
Chen Bai ◽  
...  

Abstract CRISPR/Cas9 is a valuable tool and has been extensively employed to perform gene editing in plants. However, CRISPR/Cas9 has not been successfully used in spinach, an important leafy vegetable crop. Here, we precisely edited Spo23361 and Spo10340, two cellulose synthase-like D (CSLD) genes involved in root hair formation of spinach hairy roots, using CRISPR/Cas9 system. Four mutation types (i.e., replacement, insertion, deletion, and combined mutations) were observed, among which the deletion accounted for the vast majority (about 64.1%). Mutation rate differed largely among different targets. Seven homozygous/bi-allelic and eight heterozygous/chimeric mutated lines of Spo23361 were obtained from 15 independent transgenic hairy root lines. All of the seven homozygous/bi-allelic lines displayed bulking and short root hairs, which exhibited the characteristics of Arabidopsis csld2 mutants. Thirteen heterozygous/chimeric mutated lines, but no homozygous/bi-allelic lines, of Spo10340 were obtained from 15 independent transgenic hairy root lines, all of which showed similar phenotype of root hair with normal hairy roots. The transcriptomic analysis further revealed that multiple gene expressions for cell wall modulation and membrane trafficking were disturbed, which might result in the inhibition of root hair growth in Spo23361 mutants. Our results indicate that Agrobacterium rhizogenes-mediated transformation using CRISPR/Cas9 is a simple and efficient genome editing tool in spinach. It lays a solid foundation for large-scale genome editing in spinach in future.


2022 ◽  
Vol 12 ◽  
Author(s):  
Vy Nguyen ◽  
Iain R. Searle

Common vetch (Vicia sativa) is a multi-purpose legume widely used in pasture and crop rotation systems. Vetch seeds have desirable nutritional characteristics and are often used to feed ruminant animals. Although transcriptomes are available for vetch, problems with genetic transformation and plant regeneration hinder functional gene studies in this legume species. Therefore, the aim of this study was to develop a simple, efficient and rapid hairy root transformation system for common vetch to facilitate functional gene analysis. At first, we infected the hypocotyls of 5-day-old in vitro or in vivo, soil-grown seedlings with Rhizobium rhizogenes K599 using a stabbing method and produced transgenic hairy roots after 24 days at 19 and 50% efficiency, respectively. We later improved the hairy root transformation in vitro by infecting different explants (seedling, hypocotyl-epicotyl, and shoot) with R. rhizogenes. We observed hairy root formation at the highest efficiency in shoot and hypocotyl-epicotyl explants with 100 and 93% efficiency, respectively. In both cases, an average of four hairy roots per explant were obtained, and about 73 and 91% of hairy roots from shoot and hypocotyl-epicotyl, respectively, showed stable expression of a co-transformed marker β-glucuronidase (GUS). In summary, we developed a rapid, highly efficient, hairy root transformation method by using R. rhizogenes on vetch explants, which could facilitate functional gene analysis in common vetch.


2022 ◽  
pp. 735-759
Author(s):  
Pradip Chandra Deka

Agrobacterium rhizogenes induces hairy root disease in plants. The neoplastic (cancerous) roots produced by A. rhizogenes infection, when cultured in hormone free medium, show high growth rate and genetic stability. These genetically transformed root cultures can produce levels of secondary metabolites comparable to that of intact plants. Several elicitation methods can be used to further enhance the production and accumulation of secondary metabolites. Thus, hairy root culture offer promise for high production and productivity of valuable secondary metabolites in many plants. Hairy roots can also produce recombinant proteins from transgenic roots, and thereby hold immense potential for pharmaceutical industry. Hairy root cultures can be used to elucidate the intermediates and key enzymes involved in the biosynthesis of secondary metabolites, and for phytoremediation due to their abundant neoplastic root proliferation property. Various applications of hairy root cultures and potential problems associated with them are discussed in this chapter.


2022 ◽  
Vol 9 (1) ◽  
pp. 21-28
Author(s):  
Phuong Thi Bach Vu ◽  
Dai Minh Cao ◽  
Anh Lan Bui ◽  
Nhut Nhu Nguyen ◽  
Le Van Bui ◽  
...  

Catharanthus roseus L. is a medicinal plant that produces numerous indole terpenoid alkaloids, including vincristine and vinblastine, which are used for cancer treatment. The effect of specified precursors (L-phenylalanine, L-tyrosine) and elicitors (chitosan, methyl jasmonate) on C. roseus hairy roots (CHR) growth has been examined in order to increase the content of vincristine and vinblastine. Our results showed that CHR generated by an Agrobacterium rhizogenes strain isolated in Vietnam was capable of producing both vincristine and vinblastine when subjected to precursors, but only vinblastine when exposed to elicitors. However, both precursors and elicitors were evaluated to have an effect on increasing the accumulation of TIAs in CHR. In particular, the use of elicitors required more time to find the appropriate induction conditions, while the use of precursors gave outstanding efficiency in the treatment with 1 µM phenylalanine. The greatest yields of vincristine (51.99 µg g-1 DW) and vinblastine (699.92 µg g-1 DW) were obtained in the 7th week (with 0.306 g DW biomass). This result is the first time we might boost the levels of vincristine and vinblastine in our CHR clone generated by the Vietnam strain of A. rhizogenes.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 186
Author(s):  
Anita Śliwińska ◽  
Ramona Figat ◽  
Anna Zgadzaj ◽  
Beata Wileńska ◽  
Aleksandra Misicka ◽  
...  

Hairy root cultures are considered as a valuable source of bioactive phytoconstituents with expanding applicability for their production. In the present study, hairy root cultures of Polyscias filicifolia (Araliaceae), a traditional Southeast Asian medicinal plant, were established. The transformation with Agrobacterium rhizogenes ATCC 15834 allowed to obtain 15 root lines. The K-1 line, demonstrating the highest growth capabilities, was subjected to further investigations. To enhance the biosynthetic potential of hairy roots, methyl jasmonate elicitation approach was applied (MeJA; at different doses and exposure time), with subsequent transfer of elicited roots to control medium. This strategy resulted in chlorogenic acid production up to 1.59 mg/g dry weight. HPLC-PDA-ESI-MS analysis demonstrated variation in extracts composition and allowed to identify different caffeic and ferulic acid derivatives. Next, cytotoxic, antigenotoxic, and anti-photogenotoxic properties of hairy roots extracts were determined. None of the tested extracts were cytotoxic. In addition, they demonstrated significant antigenotoxic activity with the highest protective potential; up to 52% and 49% of inhibition of induction ratio (IR) induced by the 2-aminoanthracene was revealed for extracts derived from hairy roots elicited for 3 days with 50 µM MeJA and roots elicited for 7 days with 100 µM MeJA and then transferred for 30 days to control medium, respectively. These same extracts exhibited the highest anti-photogenotoxic potential, up to 36% of inhibition of chloropromazine-induced genotoxicity.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2753
Author(s):  
Gregorio Barba-Espín ◽  
Christian Martínez-Jiménez ◽  
Alberto Izquierdo-Martínez ◽  
José R. Acosta-Motos ◽  
José A. Hernández ◽  
...  

Hairy roots (HRs) grown in vitro are a powerful platform for plant biotechnological advances and for the bio-based production of metabolites of interest. In this work, black carrot HRs able to accumulate anthocyanin as major secondary metabolite were used. Biomass and anthocyanin accumulation were improved by modulating growth medium composition—different Murashige & Skoog (MS)-based media—and H2O2-elicitation, and the level of the main antioxidant enzymes on elicited HRs was measured. Higher growth was obtained on liquid 1/2 MS medium supplemented with 60 g/L sucrose for HRs grown over 20 days. In this medium, 200 µM H2O2 applied on day 12 induced anthocyanin accumulation by 20%. The activity of superoxide dismutase (SOD)—which generates H2O2 from O2•−—increased by over 50%, whereas the activity of H2O2-scavenging enzymes was not enhanced. Elicitation in the HRs can result in a controlled oxidative burst, in which SOD activity increased H2O2 levels, whereas anthocyanins, as effective reactive oxygen species scavengers, could be induced to modulate the oxidative burst generated. Moreover, given the proven stability of the HR lines used and their remarkable productivity, this system appears as suitable for elucidating the interplay between antioxidant and secondary metabolism.


2021 ◽  
Vol 79 (1) ◽  
Author(s):  
Nadiia Matvieieva ◽  
Anatolii Shakhovsky ◽  
Hanna Tashyreva ◽  
Yakiv Ratushnyak ◽  
Volodymyr Duplij ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document