The stress-strain fields at crack tip in axially cracked cylindrical shells and the calculation of stress intensity factors

1987 ◽  
Vol 3 (3) ◽  
pp. 223-230 ◽  
Author(s):  
Liu Chuntu ◽  
Wu Xijia
1990 ◽  
Vol 57 (1) ◽  
pp. 117-127 ◽  
Author(s):  
Chien-Ching Ma

The dynamic stress intensity factors of an initially stationary semi-infinite crack in an unbounded linear elastic solid which kinks at some time tf after the arrival of a stress wave is obtained as a function of kinking crack tip velocity v, kinking angle δ, incident stress wave angle α, time t, and the delay time tf. A perturbation method, using the kinking angle δ as the perturbation parameter, is used. The method relies on solving simple problems which can be used with linear superposition to solve the problem of a kinked crack. The solutions can be compared with numerical results and other approximate results for the case of tf = 0 and give excellent agreement for a large range of kinking angles. The elastodynamic stress intensity factors of the kinking crack tip are used to compute the corresponding fluxes of energy into the propagating crack-tip, and these results are discussed in terms of an assumed fracture criterion.


2019 ◽  
Vol 9 (17) ◽  
pp. 3581 ◽  
Author(s):  
Jin-Rae Cho

This paper presents the numerical prediction of stress intensity factors (SIFs) of 2-D inhomogeneous functionally graded materials (FGMs) by an enriched Petrov-Galerkin natural element method (PG-NEM). The overall trial displacement field was approximated in terms of Laplace interpolation functions, and the crack tip one was enhanced by the crack-tip singular displacement field. The overall stress and strain distributions, which were obtained by PG-NEM, were smoothened and improved by the stress recovery. The modified interaction integral M ˜ ( 1 , 2 ) was employed to evaluate the stress intensity factors of FGMs with spatially varying elastic moduli. The proposed method was validated through the representative numerical examples and the effectiveness was justified by comparing the numerical results with the reference solutions.


Author(s):  
A G Philipps ◽  
S Karuppanan ◽  
N Banerjee ◽  
D A Hills

Crack tip stress intensity factors are found for the problem of a short crack adjacent to the apex of a notch, and lying perpendicular to one of the notch faces. Loading is represented by the two Williams eigensolutions, the ratio between which provides a reference length scale and permits a comprehensive display of the solution. The results are applied to the problem of a crack starting from the edge of a notionally adhered complete contact, and conditions for the avoidance of crack development are found.


1987 ◽  
Vol 22 (4) ◽  
pp. 203-207 ◽  
Author(s):  
M H Aliabadi ◽  
D P Rooke ◽  
D J Cartwright

In order to compute stress intensity factors accurately, the standard boundary element method is modified to take explicit account of the singularity in the stresses at a crack-tip. The known expansion terms of the crack tip displacement and stress fields are subtracted to remove the numerical difficulties associated with the representation of a singular stress field at the crack-tip. Hence the accuracy of calculation is much improved, without appreciably increasing the amount of computation involved. Furthermore, the stress intensity factor is directly obtained as a part of a solution and no extrapolations are required. The improved formulation is applied to a configuration, which is representative of a part of the wing in a civil transport aeroplane. This configuration consists of a pair of circular cut-outs (supply ports) near to which smaller holes exist; these small holes are particularly susceptible to cracking.


Sign in / Sign up

Export Citation Format

Share Document