In vitro comparison of subjective image quality of the pana digital intraoral x-ray imaging system and conventional intraoral radiography in caries detection

1998 ◽  
Vol 14 (2) ◽  
pp. 75-83 ◽  
Author(s):  
Yoshiko Ariji ◽  
Jin-ichi Takahashi ◽  
Osamu Matsui ◽  
Tsuneichi Okano ◽  
Munetaka Naitoh ◽  
...  
2012 ◽  
Vol 17 (1) ◽  
pp. 293-300 ◽  
Author(s):  
P. Pittayapat ◽  
D. Galiti ◽  
Y. Huang ◽  
K. Dreesen ◽  
M. Schreurs ◽  
...  

1993 ◽  
Vol 306 ◽  
Author(s):  
F. Cerrina ◽  
G.M. Wells

AbstractIn proximity X-ray lithography there is no imaging system in the traditional sense of the word. There are no mirrors, lenses or other means of manipulating the radiation to form an image from that of a pattern (mask). Rather, in proximity X-ray lithography, mask and imaging systems are one and the same. The radiation that illuminates the mask carries the pattern information in the region of the wavefronts that have been attenuated. The detector (photoresist) is placed so close to the mask itself that the image is formed in the region where diffraction has not yet been able to deteriorate the pattern itself. The quality of the image formation then is controlled directly by the interaction between the mask and the radiation field. In turn, this means that both the illumination field and the mask are critical. The properties of the materials used in making the mask thus play a central role in determining the quality of the image. For instance, edge roughness and slope can strongly influence the image by providing the equivalent of a blur in the diffraction process. This blur is beneficial in reducing the high frequency components in the aerial image but it needs to be controlled and be repeatable. The plating (or other physical deposition) process may create variation in density (and thickness) in the deposited film, that will show up as linewidth variation in the image because of local changes in the contrast; the same applies to variations in the carrier membrane. In the case of subtractive process, variations in edge profile across the mask must be minimized.The variations in material composition, thickness and density may all affect the finale image quality; in the case of the resist, local variations in acid concentration may have strong effect in linewidth control (this effect is of course common to all lithographies).Another place where materials will affect the final image quality is in the condensing system. Mirrors will exhibit some degree of surface roughness, leading to a scattered radiation away from the central (coherent) beam. For scanning systems, this is not harmful since no power is lost in the scattering process and a blur is actually created that reduces the degree of spatial coherence. Filters may also exhibit the same roughness; typically it will not affect the image formation. The presence of surface (changes of reflectivity) or bulk (impurities) defects may however strongly alter the uniformity of the transmitted beam. This is particularly true of rolled Be filters and windows, which may include contaminants of high-Z materials. Hence, the grain structure of the window plays a very important role in determining image uniformity.Finally, a seemingly minor but important area is that of the gas used in the exposure area, typically helium. The gas fulfills several needs: heat exchange medium, to thermally clamp the mask to the wafer; low-loss X-ray transmission medium; protection from reactive oxygen radicals and ozone formation. Small amounts of impurities (air) may have a very strong effect on the transmission, and non-uniform distributions are particularly deleterious.All these factors need to be controlled so that the final image is within the required tolerances. Unfortunately, some of these are difficult to characterize in the visible (e.g., reflectivity variations) and testing at X-ray wavelengths is necessary. Although these obstacles are by no means unsurmountable, foresight is necessary in order to deliver a functional X-ray lithography process.This work was supported by various agencies, including ARPA/ONR/NRL and the National Science Foundation.


Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1699
Author(s):  
Ahmed Jibril Abdi ◽  
Bo R. Mussmann ◽  
Alistair Mackenzie ◽  
Oke Gerke ◽  
Benedikte Klaerke ◽  
...  

The aim of this study was to determine the quantitative image quality metrics of the low-dose 2D/3D EOS slot scanner X-ray imaging system (LDSS) compared with conventional digital radiography (DR) X-ray imaging systems. The effective detective quantum efficiency (eDQE) and effective noise quantum equivalent (eNEQ) were measured using chest and knee protocols. Methods: A Nationwide Evaluation of X-ray Trends (NEXT) of a chest adult phantom and a PolyMethylmethacrylate (PMMA) phantom were used for the chest and knee protocols, respectively. Quantitative image quality metrics, including effective normalised noise power spectrum (eNNPS), effective modulation transfer function (eMTF), eDQE and eNEQ of the LDSS and DR imaging systems were assessed and compared. Results: In the chest acquisition, the LDSS imaging system achieved significantly higher eNEQ and eDQE than the DR imaging systems at lower and higher spatial frequencies (0.001 > p ≤ 0.044). For the knee acquisition, the LDSS imaging system also achieved significantly higher eNEQ and eDQE than the DR imaging systems at lower and higher spatial frequencies (0.001 > p ≤ 0.002). However, there was no significant difference in eNEQ and eDQE between DR systems 1 and 2 at lower and higher spatial frequencies (0.10 < p < 1.00) for either chest or knee protocols. Conclusion: The LDSS imaging system performed well compared to the DR systems. Thus, we have demonstrated that the LDSS imaging system has the potential to be used for clinical diagnostic purposes.


2021 ◽  
Vol 46 (3) ◽  
pp. 120-126
Author(s):  
Alexandra Schelleman ◽  
Chris Boyd

Background: This paper aims to evaluate the clinical utility and radiation dosimetry, for the mobile X-ray imaging of patients with known or suspected infectious diseases, through the window of an isolation room. The suitability of this technique for imaging coronavirus disease 2019 (COVID-19) patients is of particular focus here, although it is expected to have equal relevance to many infectious respiratory disease outbreaks.Materials and Methods: Two exposure levels were examined, a “typical” mobile exposure of 100 kVp/1.6 mAs and a “high” exposure of 120 kVp/5 mAs. Exposures of an anthropomorphic phantom were made, with and without a glass window present in the beam. The resultant phantom images were provided to experienced radiographers for image quality evaluation, using a Likert scale to rate the anatomical structure visibility.Results and Discussion: The incident air kerma doubled using the high exposure technique, from 29.47 μGy to 67.82 μGy and scattered radiation inside and outside the room increased. Despite an increase in beam energy, high exposure technique images received higher image quality scores than images acquired using lower exposure settings.Conclusion: Increased scattered radiation was very low and can be further mitigated by ensuring surrounding staff are appropriately distanced from both the patient and X-ray tube. Although an increase in incident air kerma was observed, practical advantages in infection control and personal protective equipment conservation were identified. Sites are encouraged to consider the use of this technique where appropriate, following the completion of standard justification practices.


2008 ◽  
Vol 08 (02) ◽  
pp. 227-234 ◽  
Author(s):  
D. O. ODERO ◽  
J. R. HARTLEY ◽  
D. S. SHIMM

It is important to deliver radiation to treatment targets with accuracy. Typically, patients are positioned using marks on the surface of the skin. However, without imaging procedures, there is no information about the location of mobile internal organs and targets. The use of implanted radiopaque markers can help localize internal target organs using imaging modalities. Quality assurance procedures have been performed on commercially available spiral gold markers to determine their location and image quality. The results obtained from different, least essential imaging modalities employed in radiation therapy showed that these markers are not as clearly visible on radiographs as compared to the modalities with electronic output formats. The image quality was also poorer on megavoltage as compared to kilovoltage X-ray imaging modalities.


2020 ◽  
Author(s):  
Julia Nitschke ◽  
Lara Schorn ◽  
Henrik Holtmann ◽  
Uwe Zeller ◽  
Jörg Handschel ◽  
...  

2017 ◽  
Vol 41 (3) ◽  
pp. 502-508 ◽  
Author(s):  
Ruediger E. Schernthaner ◽  
Reham R. Haroun ◽  
Sonny Nguyen ◽  
Rafael Duran ◽  
Jae Ho Sohn ◽  
...  

2021 ◽  
Vol 171 ◽  
pp. 109642
Author(s):  
Mohammadi Hossein ◽  
Shojaei Mohammad Reza ◽  
Soltani-Nabipour Jamshid

Sign in / Sign up

Export Citation Format

Share Document