Materials And Image Formation In X-ray Lithography

1993 ◽  
Vol 306 ◽  
Author(s):  
F. Cerrina ◽  
G.M. Wells

AbstractIn proximity X-ray lithography there is no imaging system in the traditional sense of the word. There are no mirrors, lenses or other means of manipulating the radiation to form an image from that of a pattern (mask). Rather, in proximity X-ray lithography, mask and imaging systems are one and the same. The radiation that illuminates the mask carries the pattern information in the region of the wavefronts that have been attenuated. The detector (photoresist) is placed so close to the mask itself that the image is formed in the region where diffraction has not yet been able to deteriorate the pattern itself. The quality of the image formation then is controlled directly by the interaction between the mask and the radiation field. In turn, this means that both the illumination field and the mask are critical. The properties of the materials used in making the mask thus play a central role in determining the quality of the image. For instance, edge roughness and slope can strongly influence the image by providing the equivalent of a blur in the diffraction process. This blur is beneficial in reducing the high frequency components in the aerial image but it needs to be controlled and be repeatable. The plating (or other physical deposition) process may create variation in density (and thickness) in the deposited film, that will show up as linewidth variation in the image because of local changes in the contrast; the same applies to variations in the carrier membrane. In the case of subtractive process, variations in edge profile across the mask must be minimized.The variations in material composition, thickness and density may all affect the finale image quality; in the case of the resist, local variations in acid concentration may have strong effect in linewidth control (this effect is of course common to all lithographies).Another place where materials will affect the final image quality is in the condensing system. Mirrors will exhibit some degree of surface roughness, leading to a scattered radiation away from the central (coherent) beam. For scanning systems, this is not harmful since no power is lost in the scattering process and a blur is actually created that reduces the degree of spatial coherence. Filters may also exhibit the same roughness; typically it will not affect the image formation. The presence of surface (changes of reflectivity) or bulk (impurities) defects may however strongly alter the uniformity of the transmitted beam. This is particularly true of rolled Be filters and windows, which may include contaminants of high-Z materials. Hence, the grain structure of the window plays a very important role in determining image uniformity.Finally, a seemingly minor but important area is that of the gas used in the exposure area, typically helium. The gas fulfills several needs: heat exchange medium, to thermally clamp the mask to the wafer; low-loss X-ray transmission medium; protection from reactive oxygen radicals and ozone formation. Small amounts of impurities (air) may have a very strong effect on the transmission, and non-uniform distributions are particularly deleterious.All these factors need to be controlled so that the final image is within the required tolerances. Unfortunately, some of these are difficult to characterize in the visible (e.g., reflectivity variations) and testing at X-ray wavelengths is necessary. Although these obstacles are by no means unsurmountable, foresight is necessary in order to deliver a functional X-ray lithography process.This work was supported by various agencies, including ARPA/ONR/NRL and the National Science Foundation.

1998 ◽  
Vol 14 (2) ◽  
pp. 75-83 ◽  
Author(s):  
Yoshiko Ariji ◽  
Jin-ichi Takahashi ◽  
Osamu Matsui ◽  
Tsuneichi Okano ◽  
Munetaka Naitoh ◽  
...  

2021 ◽  
Vol 15 ◽  
pp. 174830262110080
Author(s):  
Changjun Zha* ◽  
Qian Zhang* ◽  
Huimin Duan

Traditional single-pixel imaging systems are aimed mainly at relatively static or slowly changing targets. When there is relative motion between the imaging system and the target, sizable deviations between the measurement values and the real values can occur and result in poor image quality of the reconstructed target. To solve this problem, a novel dynamic compressive imaging system is proposed. In this system, a single-column digital micro-mirror device is used to modulate the target image, and the compressive measurement values are obtained for each column of the image. Based on analysis of the measurement values, a new recovery model of dynamic compressive imaging is given. Differing from traditional reconstruction results, the measurement values of any column of vectors in the target image can be used to reconstruct the vectors of two adjacent columns at the same time. Contingent upon characteristics of the results, a method of image quality enhancement based on an overlapping average algorithm is proposed. Simulation experiments and analysis show that the proposed dynamic compressive imaging can effectively reconstruct the target image; and that when the moving speed of the system changes within a certain range, the system reconstructs a better original image. The system overcomes the impact of dynamically changing speeds, and affords significantly better performance than traditional compressive imaging.


1979 ◽  
Vol 18 (10) ◽  
pp. 1951-1957 ◽  
Author(s):  
Suguru Uchida ◽  
Yoshie Kodera ◽  
Hiroshi Inatsu
Keyword(s):  

Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 944 ◽  
Author(s):  
Heesin Lee ◽  
Joonwhoan Lee

X-ray scattering significantly limits image quality. Conventional strategies for scatter reduction based on physical equipment or measurements inevitably increase the dose to improve the image quality. In addition, scatter reduction based on a computational algorithm could take a large amount of time. We propose a deep learning-based scatter correction method, which adopts a convolutional neural network (CNN) for restoration of degraded images. Because it is hard to obtain real data from an X-ray imaging system for training the network, Monte Carlo (MC) simulation was performed to generate the training data. For simulating X-ray images of a human chest, a cone beam CT (CBCT) was designed and modeled as an example. Then, pairs of simulated images, which correspond to scattered and scatter-free images, respectively, were obtained from the model with different doses. The scatter components, calculated by taking the differences of the pairs, were used as targets to train the weight parameters of the CNN. Compared with the MC-based iterative method, the proposed one shows better results in projected images, with as much as 58.5% reduction in root-mean-square error (RMSE), and 18.1% and 3.4% increases in peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM), on average, respectively.


2012 ◽  
Vol 2 (8) ◽  
pp. 43-51 ◽  
Author(s):  
Siti Arpah Ahmad ◽  
Mohd Nasir Taib ◽  
Noor Elaiza Abdul Khalid ◽  
Haslina Taib

2020 ◽  
Vol 18 (12) ◽  
pp. 01-05
Author(s):  
Salim J. Attia

The study focuses on assessment of the quality of some image enhancement methods which were implemented on renal X-ray images. The enhancement methods included Imadjust, Histogram Equalization (HE) and Contrast Limited Adaptive Histogram Equalization (CLAHE). The images qualities were calculated to compare input images with output images from these three enhancement techniques. An eight renal x-ray images are collected to perform these methods. Generally, the x-ray images are lack of contrast and low in radiation dosage. This lack of image quality can be amended by enhancement process. Three quality image factors were done to assess the resulted images involved (Naturalness Image Quality Evaluator (NIQE), Perception based Image Quality Evaluator (PIQE) and Blind References Image Spatial Quality Evaluator (BRISQE)). The quality of images had been heightened by these methods to support the goals of diagnosis. The results of the chosen enhancement methods of collecting images reflected more qualified images than the original images. According to the results of the quality factors and the assessment of radiology experts, the CLAHE method was the best enhancement method.


Author(s):  
Takashi Hasebe ◽  
Nobuki Tamai ◽  
Syohei Tatsuno ◽  
Yuma Itahashi ◽  
Kiyoaki Tokunou

In Radiography Testing (RT) that is an important nondestructive testing as the quality control, the digital imaging technology rapidly provides advancement. The digital imaging technology is more effective than the film method on an environmental side and the cost side, such as unnecessary of the film storage and a chemical treatment by digital output. Especially, in the medical field, the advancement by the digitalized image data processing is remarkable, and it is attempted the upgrade of the inspection technology. However, RT that uses the high-energy radiation and the fast film is a main current in an industrial field, and it has not arrived at digitalization yet. Therefore, in an industrial RT, digitalization is expected and the examination standardization is required also in ASME, JSME, and JIS. We, Mitsubishi Heavy Industries (MHI), studied an applicability of Computed Radiography (CR) to Non-Destructive Examination (NDE) for welds of piping and thick wall component in nuclear power plant. At first, MHI researched image quality of CR for piping. In this research, it was confirmed that the images of testing results by CR method are equivalent to that by film method in terms of visibility of IQI (Image Quality Indicator) and detection performance of welding defects. And we founded the optimized shooting conditions for piping. Second, MHI researched image quality of CR for thick wall component. In the result, the noise shown in fig.1 was occurred on CR image when the thick wall component such as pressure vessel is radiographed with high energy. It is speculated that the primary cause of this noise is the scattered X-ray effect (shown in fig.2). Therefore it is necessary to investigate the effect of the scattered X-ray on CR image. In this study, to reduce the scattered X-ray effect on CR image, we investigated the effect of 1) screen, 2) screen + filter on image quality of CR for thick wall component. And we studied the optimized shooting conditions and parameters for thicker component than piping to aim for more application. Finally, we applied CR to the pipings and components for nuclear power plant with the optimized shooting conditions and parameters.


Sign in / Sign up

Export Citation Format

Share Document