Nonlinear internal waves in a stratified fluid in a closed basin

1978 ◽  
Vol 1 (2) ◽  
pp. 136-146
Author(s):  
M. Falcioni ◽  
A. Sutera ◽  
F. Zirilli
2011 ◽  
Vol 18 (2) ◽  
pp. 193-208 ◽  
Author(s):  
M. J. Mercier ◽  
R. Vasseur ◽  
T. Dauxois

Abstract. We revisit experimental studies performed by Ekman on dead-water (Ekman, 1904) using modern techniques in order to present new insights on this peculiar phenomenon. We extend its description to more general situations such as a three-layer fluid or a linearly stratified fluid in presence of a pycnocline, showing the robustness of dead-water phenomenon. We observe large amplitude nonlinear internal waves which are coupled to the boat dynamics, and we emphasize that the modeling of the wave-induced drag requires more analysis, taking into account nonlinear effects. Dedicated to Fridtjöf Nansen born 150 yr ago (10 October 1861).


2011 ◽  
Vol 11 (3) ◽  
pp. 981-986 ◽  
Author(s):  
O. E. Kurkina ◽  
T. G. Talipova

Abstract. The generation of huge amplitude internal waves by the barotropic tide in the Barents Sea at high latitudes is examined using the numerical model of the Euler 2-D equations for incompressible stratified fluid. The area considered is located between the Spitsbergen (Svalbard) Island and the Franz-Victoria Trough with a cross-section of 350 km length. There are two underwater hills about 100–150 m high on the background depth of about 300 m. It is shown that intensive nonlinear internal waves with amplitudes up to 50 m and lengths of about 6–12 km are generated in this zone. The total height of such waves is huge and they must be considered as a significant factor of the environment in this basin.


Sign in / Sign up

Export Citation Format

Share Document