The moduli space of curves of genus two covering elliptic curves

1994 ◽  
Vol 84 (1) ◽  
pp. 125-133 ◽  
Author(s):  
Naoki Murabayashi
1985 ◽  
Vol 270 (4) ◽  
pp. 599-602 ◽  
Author(s):  
Fabio Bardelli ◽  
Andrea Del Centina

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Eric D’Hoker ◽  
Carlos R. Mafra ◽  
Boris Pioline ◽  
Oliver Schlotterer

Abstract In an earlier paper, we constructed the genus-two amplitudes for five external massless states in Type II and Heterotic string theory, and showed that the α′ expansion of the Type II amplitude reproduces the corresponding supergravity amplitude to leading order. In this paper, we analyze the effective interactions induced by Type IIB superstrings beyond supergravity, both for U(1)R-preserving amplitudes such as for five gravitons, and for U(1)R-violating amplitudes such as for one dilaton and four gravitons. At each order in α′, the coefficients of the effective interactions are given by integrals over moduli space of genus-two modular graph functions, generalizing those already encountered for four external massless states. To leading and sub-leading orders, the coefficients of the effective interactions D2ℛ5 and D4ℛ5 are found to match those of D4ℛ4 and D6ℛ4, respectively, as required by non-linear supersymmetry. To the next order, a D6ℛ5 effective interaction arises, which is independent of the supersymmetric completion of D8ℛ4, and already arose at genus one. A novel identity on genus-two modular graph functions, which we prove, ensures that up to order D6ℛ5, the five-point amplitudes require only a single new modular graph function in addition to those needed for the four-point amplitude. We check that the supergravity limit of U(1)R-violating amplitudes is free of UV divergences to this order, consistently with the known structure of divergences in Type IIB supergravity. Our results give strong consistency tests on the full five-point amplitude, and pave the way for understanding S-duality beyond the BPS-protected sector.


Sign in / Sign up

Export Citation Format

Share Document