Austenite grain growth kinetics in Al-killed plain carbon steels

1996 ◽  
Vol 27 (11) ◽  
pp. 3399-3409 ◽  
Author(s):  
Matthias Militzer ◽  
E. Bruce Hawbolt ◽  
T. Ray Meadowcroft ◽  
Alan Giumelli
2010 ◽  
Vol 41 (12) ◽  
pp. 3161-3172 ◽  
Author(s):  
Kumkum Banerjee ◽  
Matthias Militzer ◽  
Michel Perez ◽  
Xiang Wang

2011 ◽  
Vol 172-174 ◽  
pp. 809-814 ◽  
Author(s):  
Kumkum Banerjee ◽  
Michel Perez ◽  
Matthias Militzer

Non-isothermal austenite grain growth kinetics under the influence of several combinations of Nb, Ti and Mo containing complex precipitates has been studied in a microalloyed linepipe steel. The goal of these studies is the development of a grain growth model to predict the austenite grain size in the weld heat affected zone (HAZ). A detailed electron microscopic investigations of the as-received steel proved the presence of Ti-rich, Nb-rich and Mo-rich precipitates. Inter and intragranular precipitates of ~5-150 nm have been observed. The steel has been subjected to austenitizing heat treatments to selected peak temperatures of 950, 1150 and 1350°C at various heating rates of 10, 100 and 1000°C/s. Thermal cycles have been found to have a strong effect on the final austenite grain size. The increase in heating rate from 100 to 1000°C/s has a negligible difference in the austenite grain size irrespective of the austenitizing temperature. However, the increase in grain size has been noticed at 10°C/s heating rate for all the austenitizing temperatures. The austenite grain growth kinetics have been explained taking into account the austenite growth in the presence of precipitates.


2021 ◽  
Vol 1016 ◽  
pp. 1127-1133
Author(s):  
Beatriz Pereda ◽  
Felipe Bastos ◽  
Beatriz López ◽  
J.M. Rodriguez-Ibabe

While the role of Nb in flat rolling of low carbon steels has been investigated in many works, the information about the use of Nb in rebar rolling of higher carbon grades is more limited. Rebar rolling presents differences relative to flat rolling that can affect the role of Nb, such as the application of higher number of rolling passes, higher strain rates, lower interpass times, and, consequently, enhanced adiabatic heating. Increasing the number of passes can contribute to austenite grain refinement. However, the high finishing temperatures in rebar rolling can lead also to significant austenite grain growth and microstructural heterogeneity development before phase transformation. This phenomenon will directly influence the final grain size and can also lead to the appearance of second hard phases in the final product. One of the options to avoid austenite grain growth is to add microalloying elements that retard grain growth kinetics, either in solid solution or as precipitates. This can open new roles for the application of Nb in rebar rolling. To analyze this, in this work laboratory torsion tests were performed with two 0.2%C steels microalloyed with two different Nb contents (0.029% and 0.015%). Soaking temperatures from 1100°C to 1250°C were applied to obtain different amounts of Nb in solid solution before grain growth study. The study shows that not only finish rolling temperature and cooling time, but also reheating temperature and the amount of Nb remaining in the form of undissolved precipitates are important factors controlling austenite grain growth.


2012 ◽  
Vol 715-716 ◽  
pp. 292-296
Author(s):  
Kumkum Banerjee ◽  
Michel Perez ◽  
Matthias Militzer

Non-isothermal austenite grain growth kinetics has been studied in a microalloyed linepipe steel with complex precipitates containing Ti, Nb and/or Mo. The goal of these experimental studies is to provide the basis for the development of a grain growth model to predict the austenite grain size evolution in the weld heat affected zone (HAZ). Detailed electron microscopic investigations of the as received steel proved the presence of Ti-rich, Nb-rich and Mo-rich precipitates. The steel was subjected to austenitizing heat treatments to selected peak temperatures of 950, 1150 and 1350 °C at heating rates of 10, 100 and 1000 °C/s, respectively. Thermal cycles have been found to have a strong effect on the austenite grain size. Austenite grain sizes increase with peak temperature and decreasing heating rate. However, the increase in heating rate from 100 to 1000 °C/s has a negligible effect on the austenite grain size. The observed austenite grain growth kinetics can be explained taking into account the potential dissolution of Nb-rich precipitates.


Sign in / Sign up

Export Citation Format

Share Document