rotor steel
Recently Published Documents


TOTAL DOCUMENTS

211
(FIVE YEARS 29)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Vol 2160 (1) ◽  
pp. 012022
Author(s):  
Xiaoyan Qian ◽  
Xin Ye ◽  
Xiaoqi Hou ◽  
Fuxin Wang ◽  
Shaowei Li ◽  
...  

Abstract The narrow gap MAG welding system was used to successfully weld the 50mm thick butt joint of 25Cr2NiMo1V rotor steel. After 15-layer bead welding, heat treatment is performed on the welded joint. Compare the changes in the microstructure, tensile strength and impact energy of the welded joints and the heat-treated joints at 580°C (20h). The results show that after the heat treatment of the structure, the side lath ferrite in the coarse-grained region grows up, and the eutectoid ferrite grows up in the fine-grained region first. The strength of the welded joint is about 605MPa, and the fracture is characterized by ductile fracture. After heat treatment at 580°C (20h), the strength is about 543MPa, the fracture is characterized by ductile fracture, and there are also a large number of discontinuous small surface platforms, and the characteristic of brittle fracture appears slightly. The impact energy of the weld center of the welded joint is about 141J, the fusion line area is about 113J, and the toughness of the fusion line is slightly lower than that of the weld center. After heat treatment, the impact energy at the center of the weld is about 183J, the fusion line area is about 95J, the toughness of the weld center increases, and the toughness of the fusion line decreases.


2021 ◽  
pp. 108128652110572
Author(s):  
Mohammad Rezaul Karim ◽  
Kai Kadau ◽  
Santosh Narasimhachary ◽  
Francesco Radaelli ◽  
Christian Amann ◽  
...  

We present a computational study and framework that allows us to study and understand the crack nucleation process from forging flaws. Forging flaws may be present in large steel rotor components commonly used for rotating power generation equipment including gas turbines, electrical generators, and steam turbines. The service life of these components is often limited by crack nucleation and subsequent growth from such forging flaws, which frequently exhibit themselves as non-metallic oxide inclusions. The fatigue crack growth process can be described by established engineering fracture mechanics methods. However, the initial crack nucleation process from a forging flaw is challenging for traditional engineering methods to quantify as it depends on the details of the flaw, including flaw morphology. We adopt the peridynamics method to describe and study this crack nucleation process. For a specific industrial gas turbine rotor steel, we present how we integrate and fit commonly known base material property data such as elastic properties, yield strength, and S-N curves, as well as fatigue crack growth data into a peridynamic model. The obtained model is then utilized in a series of high-performance two-dimensional peridynamic simulations to study the crack nucleation process from forging flaws for ambient and elevated temperatures in a rectangular simulation cell specimen. The simulations reveal an initial local nucleation at multiple small oxide inclusions followed by micro-crack propagation, arrest, coalescence, and eventual emergence of a dominant micro-crack that governs the crack nucleation process. The dependence on temperature and density of oxide inclusions of both the details of the microscopic processes and cycles to crack nucleation is also observed. The results are compared with fatigue experiments performed with specimens containing forging flaws of the same rotor steel.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4498
Author(s):  
Xiaoyan Qian ◽  
Xin Ye ◽  
Xiaoqi Hou ◽  
Fuxin Wang ◽  
Shaowei Li ◽  
...  

The thick plate narrow gap welding of 25Cr2NiMo1V rotor steel is achieved by metal active gas arc welding, in which the weld gap was 18.04–19.9 mm. After welding, the weldment was heat treated at 580 °C (20 h). The impact and tensile properties in the as-welded and heat-treated were studied. The results show that after heat treatment, the coarse carbides in the center of the weld were transformed into fine granular carbides distributed along the grain boundaries, and the quantity of carbide precipitates in the weld near the fusion line was reduced. The tensile fracture mode changed from a ductile fracture to a combination of brittle and ductile fractures, and the tensile strength of the weld metal changed from 605 MPa to 543 MPa. After heat-treated, the radiation zone of the weld center changed from a brittle fracture to a combination of brittle and ductile fractures, and the impact energy changed from 141 J to 183 J; the characteristics of the brittle fracture in the radial zone of the fusion line were more obvious, and the impact energy changed from 113 J to 95 J. Therefore, after heat treatment, the toughness of the welded metal was improved, without reducing the strength and hardness of the welded metal to a large extent.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4118
Author(s):  
Xuewen Chen ◽  
Yuqing Du ◽  
Tingting Lian ◽  
Kexue Du ◽  
Tao Huang

As a new-type of ultra-supercritical HI-IP rotor steel, X12CrMoWVNbN10-1-1 alloy steel has excellent integrative performance, which can effectively improve the power generation efficiency of the generator set. In this paper, uniaxial thermal compression tests were carried out over a temperature range of 950–1200 °C and strain rates of 0.05–5 s−1 with a Gleeble-1500D thermal simulation testing machine. Moreover, based on hot compression experimental data and the theory of processing diagrams, in combination with the dynamic material model, a three-dimensional (3-D) thermal processing map considering the effect of strain was constructed. It was concluded that optimum thermal deformation conditions were as follows: the temperature range of 1150–1200 °C, the strain rate range of 0.05–0.634 s−1. Through secondary development of the finite element (FE) software FORGE®, three-dimensional thermal processing map data were integrated into finite element software FORGE®. The distributions of instability coefficient and power dissipation coefficient were obtained over various strain rates and temperatures of the Ø 8 × 12 mm cylinder specimen by using finite element simulation. It is shown that simulation results are consistent with the microstructure photos. The method proposed in this paper, which integrates the three-dimensional processing map into the finite element software FORGE® (Forge NxT 2.1, Transvalor, Nice, France), can effectively predict the formability of X12CrMoWVNbN10-1-1 alloy steel.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3464
Author(s):  
Martyna Tomala ◽  
Andrzej Rusin ◽  
Adam Wojaczek

An increase in the share of renewable sources in the energy mix makes coal-fired power plants operate in new conditions that require more dynamic operation and adequate flexibility. The frequency of the power unit start-ups increases and so does the frequency of changes in loads. This intensifies some life consumption processes, such as low-cycle fatigue and crack propagation in the turbine components. Further operation of power unit elements that have already been in service for a long time has to be supplemented with new diagnostic and repair procedures that take into account the intensification of life consumption processes. This article gives predictions about the propagation rate of potential cracks in the turbine rotor for different scenarios of the power unit’s long-term operation. A method is presented of rational selection of the diagnostic testing time based on risk analysis. The method is used to estimate the optimal interval after which diagnostic testing of a 200 MW turbine rotor should be carried out. Changes in the rotor steel crack toughness are evaluated based on the results of testing of microspecimens cut out of the rotor. Turbines with more frequent start-ups and shorter start-up times necessitate performance of diagnostic testing of the rotor central bore after about 12 years of turbine operation.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 603 ◽  
Author(s):  
Chaoyu Han ◽  
Zhipeng Cai ◽  
Manjie Fan ◽  
Xia Liu ◽  
Kejian Li ◽  
...  

Low pressure turbine rotors are manufactured by welding thick sections of 25Cr2Ni2MoV rotor steel using tungsten inert gas (TIG) backing weld, and submerged arc welding (SAW) filling weld. In this study, the microstructure of columnar grain zones and reheated zones in weld metal was characterized meticulously by Optical Microscope (OM), Scanning Electron Microscope (SEM) and Electron Back-Scatter Diffraction (EBSD). The results showed that, compared with SAW weld metal microstructure, TIG weld metal microstructure was relatively fine and homogeneous, due to its lower heat input and faster cooling rate than SAW. The maximum effective grain size in TIG and SAW weld were 7.7 μm and 13.2 μm, respectively. TIG weld metal was composed of lath bainite (LB) and blocky ferrite (BF), while SAW weld metal was composed of acicular ferrite (AF), lath bainite (LB)and ferrite side plate (FSP). Tempered martensite (TM) was detected along columnar grain boundaries in both TIG and SAW weld metals, which was related to the segregation of solute elements during weld solidification. Electron Probe Micro-Analysis (EPMA) results showed that the contents of Ni and Mn at the dendritic boundaries were 50% higher than those at the dendritic core in TIG weld. Similarly, 30% of Ni and Mn segregation at dendritic boundaries was also found in SAW weld. In addition, the microhardness of the two welded joints was tested.


Sign in / Sign up

Export Citation Format

Share Document