linepipe steel
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 12)

H-INDEX

15
(FIVE YEARS 3)

CORROSION ◽  
10.5006/3936 ◽  
2021 ◽  
Author(s):  
Sara Filice ◽  
Joe McDermid ◽  
Joey Kish

The structure and composition of mill scale on linepipe steel formed with and without accelerated cooling conditions (ACC) was investigated and correlated to localized corrosion susceptibility. The mill scale structure/composition was investigated using scanning electron microscopy equipped with X-ray energy dispersive spectroscopy and electron back scatter diffraction, as well as X-ray diffraction. Localized dissolution of the mill scale was investigated using electrochemical techniques including open circuit potential measurements, electrochemical impedance spectroscopy, and electrochemical noise measurements in a corrosive phase solution. The various surface analytical and electrochemical techniques indicated that the mill scale formed without ACC consists of a relatively crack-free, thick inner wüstite layer with a thinner magnetite outer layer. However, the mill scale formed with ACC comprised a magnetite layer containing islands of retained wüstite, with some evidence of magnetite/iron eutectoid formation and which exhibited a relatively high density of through-scale cracks. These cracks can provide direct paths that connect the corrosive solution to the steel substrate, leading to more rapid breakdown of the mill scale. Additionally, the cracks can form a crevice between the mill scale and the steel surface, providing sites for pit initiation and growth. Coefficient of thermal expansion mismatch thermal stress calculations indicate that a magnetite-based scale is more susceptible to cracking/spalling than a wüstite-based scale, resulting in the ACC plate being more susceptible to localized corrosion.


2021 ◽  
Author(s):  
Taro Kizu ◽  
Ryutaro Sakai ◽  
Hiroshi Imoto ◽  
Shigeru Endo ◽  
Frank Barbaro

2021 ◽  
Author(s):  
Bradley Davis ◽  
Guillaume Michal ◽  
Cheng Lu ◽  
Valerie Linton

Author(s):  
Bradley J. Davis ◽  
Guillaume Michal ◽  
Cheng Lu ◽  
Valerie Linton

Abstract Separations are small fissures that form along the rolling-plane of some steels when sufficient stresses are created to open planes of weakness in the material. In the pipeline industry, separations have been observed on the fracture surfaces of tensile, Charpy, and drop-weight tear tests — the key tests for determining the fracture arrest capabilities of line pipe steels. When compared, the separation appearance between lab-scale tests and full-scale fracture test are noticeably dissimilar. Therefore, the influence separations have on the fracture behaviour may not clearly scale between lab-scale and full-scale tests. In this study, the separation severity of Charpy, DWTT, and full-fracture propagation test fracture surfaces was measured and compared. Two full-scale burst tests were carried out with pipes containing a CO2/N2 mixture. Fracture surfaces were observed along the length of the pipe and captured when the separation appearance changed. For each pipe section, the corresponding lab-scale test surfaces were compared. With the separations measured across all fracture faces, the separation appearance of the full-scale test surfaces did not provide the same values as the lab-scale tests. However, the lab-scale tests did capture the trend in separation severity for each pipe section. Only the lab-scale test surfaces showed a correlation in separation severity.


Sign in / Sign up

Export Citation Format

Share Document